EFFECTS OF CASINGS AND CANOPY DIVIDERS INSTALLED IN A SPRAYING UNIT ON RAPESEED LOSSES DURING DESICCATION

Dariusz Choszcz, Zdzisław Kaliniewicz, Stanisław Konopka, Adam Lipiński, Piotr Markowski, Tadeusz Rawa
Chair of Machinery and Separation Processes
University of Warmia and Mazury in Olsztyn

Key words: rapeseed, desiccation, rapeseed losses, casings, canopy dividers.

Abstract

The objective of the present study was to determine rapeseed losses recorded during desiccation with Avans Premium 360 SL, and caused by natural shattering. Shattering seeds were trapped with elastic sticky tapes. Rapeseed losses were determined for a traditional spraying unit and one equipped with canopy dividers, a screen and tractor undercarriage casings. It was found that the additional equipment installed in a spraying unit allowed to reduce rapeseed losses.

Wpływ osłon i rozdzielaczów lanu zastosowanych w agregacie opryskującym na straty nasion przy desykacji rzepaku

Dariusz Choszcz, Zdzisław Kaliniewicz, Stanisław Konopka, Adam Lipiński, Piotr Markowski, Tadeusz Rawa
Katedra Maszyn Roboczych i Procesów Separacji
Uniwersytet Warmińsko-Mazurski w Olsztynie

Słowa kluczowe: rzepak, desykacja, straty nasion, osłony, rozdzielacze lanu.
Badano straty nasion rzepaku podczas desykacji œrodkiem Avans Premium 360 SL oraz straty nasion spowodowane nastêpczym samoosyivyaniem. Do rejestracji osypujêcych siê nasion zastosowano lepkie pod¿o¿a. Straty okreœlano dla tradycyjnego agregatu oraz wypoesaæonego w rozdzielacz ëanu, ekran i os³ony podwozia. Stwierdzono, ¿e zastosowanie wypoesañenia dodatkowego w naziemnym agregacie opryskujêcym przyczyni³o siê do obni¿enia strat nasion.

Introduction

One of the major problem in rape growing is its uneven ripening and silique breaking, followed by seed shattering, which causes rapeseed losses at a level of several per cent. These losses can be reduced by desiccation with various chemical preparations (Mechanizacja 1993).

The main difﬁculty encountered in studies of rapeseed losses is seed identification on the soil, due to their dark color and a relatively small diameter (RAWA, WIERZBICKI 1993).

Rapeseed losses can be determined using an indirect method which consists in counting the plants that had grown from shattered seeds, or a direct method which consists in counting seeds falling into containers placed between plant rows or on the soil surface (LOOF, JONSSON 1970, RUDKO 2000). Under field conditions rapeseed losses may be also determined with specially constructed frames with speciﬁed surface areas. This method enables to estimate losses in the cutting, threshing and cleaning sections of a harvester (SZOT et al. 1988, SZOT, TYS 1991, SZOT et al. 1991).

The solution which allows not only to determine rapeseed losses, but also their transverse distribution, is placing elastic sticky tapes between plant rows, to trap shattering seeds (RAWA, WIERZBICKI 1993, LIPiNSKI et al. 2003). This method, considered most efficient, was used in the present experiment, whose objective was to determine the effects of casings and canopy dividers installed in a spraying unit on rapeseed losses recorded during desiccation with Avans Premium 360 SL, and caused by natural shattering between desiccation and harvest, as compared with those recorded in the case of a traditional spraying unit.

Conditions and Methods

Rape plants were desiccated with Avans Premium 360 SL in the first decade of July 2002, in the plots of the Production-Experimental Station "Balcyny" Ltd. This treatment was performed with a unit consisting of a Ursus 1201 tractor and a sprayer, type S-320 ND18 C320, with a working width of 18 m. The tractor was equipped with narrow tires: steering wheels
– 7.5-20, driving wheels – 12.4 R36. Tire width of front and rear wheels was
19 and 31.5 cm respectively. The equipment and accessories ("Syngenta Crop
Protection" Ltd, Warsaw), shown in Figure 1, i.e. a screen, tractor under-
carriage casings and canopy dividers, were used in the investigations. The
screen, in the form of a steel-reinforced Plexiglas rigid plate, was used for
bending plants in a belt between technological tracks. To prevent plant catch-
ing on protruding elements of the spraying unit (tractor + sprayer) under-
carriage, two parts of a protective apron were used. The apron was made of
canvas paulin with a synthetic coating. The steering (front) and driving (rear)
wheels of the tractor were equipped with a divider, designed for canopy
dividing in technological tracks.

![Spraying unit equipped with a screen, canopy dividers and tractor undercarriage casing](image)

Fig. 1. Spraying unit equipped with a screen, canopy dividers and tractor undercarriage casing

A 60 × 72 m bed, encompassing the width of four running tracks, was
separated in the plantation. Approximately 20 and 40 m from the bed mar-
gin, along its width, two paths (each approx. 40 cm in width) were cut with
hedge shears.

Measurements of the moisture content of rapeseeds and some symp-
toms of their ripening, such as seed browning, stand color, silique opening
in U or V bend tests (Produkcja.... 1996), provided the basis for determining
the time of desiccation.

Shattering seeds were trapped with sticky tapes (Rawa, Wierzbicki 1993)
made of white rubber floor finish, approx. 2 mm in thickness. The measur-
ing area of each tape was divided into 10 elementary sub-surfaces. To obtain
adequate tape stickiness its surface was covered with a 0.5 mm layer of
grease (LT-4). At least 20 tapes were placed within the running track (ap-
prox. 4 m in width) of the spraying unit. After the spraying unit passage the
seeds found in the tape elementary sub-surfaces, 80 cm² each, were count-
ed. Seed weight in each elementary sub-surface was calculated multiplying the number of seeds by the average weight of a single seed determined on the basis of 1000 seed weight, harvested with a combine. Rapeseed losses determined for particular elementary sub-surfaces were then calculated per ha. Rapeseed losses were determined only for plants subjected to direct mechanical impact of the spraying unit elements. Apart from the belt with technological tracks, these were also adjacent belts with tapes, where the number of seeds constituted at least 50% of the number of seeds found on the neighboring tapes on the sprayer’s side.

The results of the experiment were analyzed statistically (analysis of variance) using the computer program Statistica Pl (1997). The following zero hypothesis (H_0) was verified: mean rapeseed losses in the areas compared are the same. The same hypothesis was tested while comparing the two spraying units used in the experiment.

Results and Discussion

During rape desiccation temperature and air humidity were 19.0°C and 58% respectively. Rape plants were “standing”, also in the belt between technological tracks, where plants were of the same height before desiccation as in the main part. Technological tracks, used during spraying, were covered with plants growing in the adjacent belts, but could be recognized easily.

Figure 2 shows tapes with shattered rapeseeds in the belt between technological tracks, and Figure 3 presents an example of transverse distribution of rapeseed losses caused by the mechanical impact of spraying unit elements during desiccation, and by natural shattering. The results of a statistical analysis of rapeseed losses in selected areas are given in Tables
Fig. 3. Example of transverse distribution of rapeseed losses during desiccation with Avans Premium 360 SL and caused by natural shattering for a spraying unit with additional equipment: 1 – screen, 2 – canopy divider mounted at the front wheel, 3 – protective aprons, 4 – canopy divider mounted at the rear wheel, 5 – measuring tapes
Table 1

Comparison of rapeseed losses during desiccation with a spraying unit with and without additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value (kg/ha)</td>
<td>standard deviation (kg/ha)</td>
<td>coefficient of variation (%)</td>
<td></td>
</tr>
<tr>
<td>1. Spraying unit with additional equipment</td>
<td>290</td>
<td>51.15</td>
<td>65.0839</td>
<td>127.24</td>
<td></td>
</tr>
<tr>
<td>2. Spraying unit without additional equipment</td>
<td>230</td>
<td>91.81</td>
<td>132.9562</td>
<td>144.82</td>
<td></td>
</tr>
</tbody>
</table>

Significance level	$\alpha=0.05$
Calculated value of F statistics	$F = 20.8300$
Probability of exceeding F statistics	$p(F) = 0.0000$

Because $p(F) < \alpha$, the zero hypothesis (H_0) has been rejected, and the alternative hypothesis H_1 has been adopted.

Significance of differences by the Duncan test: $2 > 1^{}$**

Statistically significant differences at $\alpha=0.01$

Table 2

Comparison of total rapeseed losses during desiccation with a spraying unit with and without additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value (kg/ha)</td>
<td>standard deviation (kg/ha)</td>
<td>coefficient of variation (%)</td>
<td></td>
</tr>
<tr>
<td>1. Spraying unit with additional equipment</td>
<td>290</td>
<td>75.59</td>
<td>82.5427</td>
<td>109.20</td>
<td></td>
</tr>
<tr>
<td>2. Spraying unit without additional equipment</td>
<td>230</td>
<td>137.95</td>
<td>176.5811</td>
<td>128.00</td>
<td></td>
</tr>
</tbody>
</table>

Significance level	$\alpha=0.05$
Calculated value of F statistics	$F = 28.3702$
Probability of exceeding F statistics	$p(F) = 0.0000$

Because $p(F) < \alpha$, the zero hypothesis (H_0) has been rejected, and the alternative hypothesis H_1 has been adopted.

Significance of differences by the Duncan test: $2 > 1^{}$**

Statistically significant differences at $\alpha=0.01$
Table 3

Comparison of rapeseed losses during desiccation in the range of impact of elements of a spraying unit without additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value</td>
<td>standard deviation</td>
<td>coefficient of variation (%)</td>
</tr>
<tr>
<td>01. Spraying unit with additional equipment</td>
<td>140</td>
<td>53.61</td>
<td>82.9182</td>
<td>154.65</td>
</tr>
<tr>
<td>02. Spraying unit without additional equipment</td>
<td>90</td>
<td>151.23</td>
<td>169.9494</td>
<td>112.38</td>
</tr>
</tbody>
</table>

Significance level: $\alpha = 0.05$

Calculated value of F statistics: $F = 33.7540$

Probability of exceeding F statistics: $p(F) = 0.0000$

Because $p(F) < \alpha$, the zero hypothesis (H_0) has been rejected, and the alternative hypothesis H_1 has been adopted.

Significance of differences by the Duncan test: $2 > 1^{**}$

Statistically significant differences at $\alpha = 0.01$

Table 4

Comparison of total rapeseed losses during desiccation in the range of impact of elements of a spraying unit without additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value</td>
<td>standard deviation</td>
<td>coefficient of variation (%)</td>
</tr>
<tr>
<td>01. Spraying unit with additional equipment</td>
<td>140</td>
<td>80.16</td>
<td>106.2813</td>
<td>132.59</td>
</tr>
<tr>
<td>02. Spraying unit without additional equipment</td>
<td>90</td>
<td>227.86</td>
<td>221.7069</td>
<td>97.30</td>
</tr>
</tbody>
</table>

Significance level: $\alpha = 0.05$

Calculated value of F statistics: $F = 45.8341$

Probability of exceeding F statistics: $p(F) = 0.0000$

Because $p(F) < \alpha$, the zero hypothesis (H_0) has been rejected, and the alternative hypothesis H_1 has been adopted.

Significance of differences by the Duncan test: $2 > 1^{**}$

Statistically significant differences at $\alpha = 0.01$
Table 5
Comparison of rapeseed losses during desiccation in the range of impact of elements of a spraying unit with additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value (kg/ha)</td>
<td>standard deviation (kg/ha)</td>
<td>coefficient of variation (%)</td>
</tr>
<tr>
<td>1. Wheels without canopy dividers</td>
<td>110</td>
<td>61.09</td>
<td>70.0795</td>
<td>114.71</td>
</tr>
<tr>
<td>2. Screen and protective aprons</td>
<td>90</td>
<td>53.15</td>
<td>62.5601</td>
<td>117.71</td>
</tr>
<tr>
<td>3. Wheels with canopy dividers</td>
<td>90</td>
<td>37.01</td>
<td>59.1416</td>
<td>159.81</td>
</tr>
</tbody>
</table>

Significance level: \(\alpha = 0.05 \)

Calculated value of \(F \) statistics: \(F = 3.5107 \)

Probability of exceeding \(F \) statistics: \(p(F) = 0.0304 \)

Because \(p(F) < \alpha \), the zero hypothesis \((H_0) \) has been rejected, and the alternative hypothesis \(H_1 \) has been adopted.

Significance of differences by the Duncan test: 1 > 3** 2 > 3*

** statistically significant differences at \(\alpha = 0.01 \)

* statistically significant differences at \(\alpha = 0.05 \)

Table 6
Comparison of total rapeseed losses during desiccation in the range of impact of elements of a spraying unit with additional equipment

<table>
<thead>
<tr>
<th>Range of impact</th>
<th>Number of elementary sub-surfaces</th>
<th>Rapeseed losses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean value (kg/ha)</td>
<td>standard deviation (kg/ha)</td>
<td>coefficient of variation (%)</td>
</tr>
<tr>
<td>1. Wheels without canopy dividers</td>
<td>110</td>
<td>89.41</td>
<td>90.7042</td>
<td>101.45</td>
</tr>
<tr>
<td>2. Screen and protective aprons</td>
<td>90</td>
<td>79.76</td>
<td>79.5746</td>
<td>99.77</td>
</tr>
<tr>
<td>3. Wheels with canopy dividers</td>
<td>90</td>
<td>54.53</td>
<td>70.7949</td>
<td>129.83</td>
</tr>
</tbody>
</table>

Significance level: \(\alpha = 0.05 \)

Calculated value of \(F \) statistics: \(F = 4.7035 \)

Probability of exceeding \(F \) statistics: \(p(F) = 0.0098 \)

Because \(p(F) < \alpha \), the zero hypothesis \((H_0) \) has been rejected, and the alternative hypothesis \(H_1 \) has been adopted.

Significance of differences by the Duncan test: 1 > 3** 2 > 3*

** statistically significant differences at \(\alpha = 0.01 \)

* statistically significant differences at \(\alpha = 0.05 \)
Effects of Casings and Canopy Dividers Installed in a Spraying Unit...

1+6. They indicate that the use of a spraying unit with additional equipment allowed to reduce rapeseed losses during desiccation almost twofold, compared with a traditional unit (51 kg/ha vs. 92 kg/ha). Similar results were obtained for total rapeseed losses recorded during desiccation and caused by natural shattering from desiccation to harvest (Table 2).

It was also found that rapeseed losses resulting from natural shattering depended on the impact of spraying unit elements during desiccation, regardless of the fact whether the unit was equipped with screens and canopy dividers, or not. In the case of a traditional spraying unit, the highest rapeseed losses were noted in the belt between technological tracks; they were almost threefold higher than in the other belts (Tables 3 and 4). As regards the spraying unit with additional equipment the lowest rapeseed losses were recorded within the range of impact of wheels with canopy dividers: during desiccation they amounted to approx. 37 kg/ha (Table 5), and including losses caused by natural shattering – to approx. 55 kg/ha (Table 6).

Conclusions

1. The use of a spraying unit equipped with screens, canopy dividers and protective aprons enables to reduce rapeseed losses during desiccation with Avans Premium 360 SL, and total losses including those caused by natural shattering.

2. In the case of a traditional spraying unit, the highest rapeseed losses were noted in the belt between technological tracks, which indicates that the plants were affected first of all by the tractor undercarriage.

3. Average rapeseed losses for the spraying unit equipped with casings were by approx. 50% lower in the impact range of wheels with canopy dividers than in the belt between technological tracks.

4. The additional equipment of a spraying unit proposed in the paper can bring measurable profits.

References

Accepted for print 2004.04.22