M7. Modeling the electrical properties of biological systems. Properties of RLC circuit

Topics:

- The basics of electrodynamics [1] - Chap 21; electric charge - Chap. 21-2 and Coulomb's law - Chap. 21-4
- The electric field [1] - Chaps. 22-1 through 22-4, 22-8 through 22-9
- Electric potential [1] - Chaps. 24-1 through 24-6 and 24-10
- Capacitor and capacitance [1] - Chap. 25; connecting capacitors - Chap. 25-4, energy stored in a capacitor - Chap. 25-5
- Electric current [1] - Chaps. 26; the laws of electric current flow: Ohm's law - Chaps. 26-5 through 26-6, power - Chap. 26-7
- Electrical circuits [1] - Chap. 27
- Direct current and alternating current (DC/AC) [1] - Chaps. 26-2 and 31-6
- Modeling of the basic biological structures. The electric model of a cell membrane.
- Inductor and inductance [1] - Chap. 30; Faraday's law of induction - Chap. 30-3, Lenz's law - Chap. 30-4, inductors - Chap. 30-7 and energy stored in a magnetic field - Chap. 30-11
- Electromagnetic oscillations in an AC circuit [1] - Chap. 31
- Inductor in DC and AC circuit [1] - Chaps. 31-2 through 31-4
- Capacitor in an AC circuit [1] - Chaps. 31-2 through 31-4
- Electrical impedance. Resonance in the RLC circuit. Power in an AC circuit [1] Chaps. 31-7 through 31-11

Instruction

1. DC circuit for determining of ohmic resistance.

Scheme 1
2. For three different positions of potentiometer, read voltages and currents. Determine the resistance R of the inductor.

$$
R=\frac{U}{I}
$$

3. Enter the results into the table. Remember to write down classes and ranges of the meters, which were set for the measurement.

no.	$\boldsymbol{U}(\mathbf{V})$	$\boldsymbol{I}(\mathbf{A})$	$\boldsymbol{R}(\boldsymbol{\Omega})$
1			
2			
3			

4. AC circuit for determining the impedance of inductive coil.

Scheme 2

5. Read voltages and currents for corresponding frequencies (change the frequency from 20 to 200 Hz , with 10 Hz step).
6. Calculate the impedance of the inductor Z_{L} as a function of current frequency
$Z_{L}=\frac{U_{S}}{I_{S}}$
7. Calculate inductive reactance as a function of frequency:

$$
R_{L}=\sqrt{Z_{L}^{2}-R^{2}}
$$

7. Enter the results into the table.

$\boldsymbol{f}(\mathbf{H z})$	$\boldsymbol{U}_{\boldsymbol{s}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{s}}(\mathbf{A})$	$\boldsymbol{Z}_{\boldsymbol{L}}(\boldsymbol{\Omega})$	$\boldsymbol{R}_{\boldsymbol{L}}(\boldsymbol{\Omega})$
50				
60				
70				
80				
90				

100				
110				
120				
130				
140				
150				
160				
170				
180				
190				
200				

8. AC circuit for determining the impedance of a capacitor.
9. Read voltages and currents for corresponding frequencies (change the frequency from 20 to 200 Hz , with 10 Hz step).

Scheme 3

10. Determine capacitive reactance Z_{C} as a function of frequency (from 20 to 200 Hz , with 10 Hz step).

$$
Z_{C}=\frac{U_{s}}{I_{s}}
$$

11. Enter the results into the table.

$\boldsymbol{f}(\mathbf{H z})$	$\boldsymbol{U}_{\boldsymbol{s}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{s}}(\mathbf{A})$	$\boldsymbol{Z}_{c}(\mathbf{\Omega})$
50			
60			
70			
80			
90			
100			
110			

120			
130			
140			
150			
160			
170			
180			
190			
200			

12. AC circuit for determining of impedance of connected in series: inductor and capacitor.
13. Read voltages and currents for corresponding frequencies (change the frequency from 20 to 200 Hz , with 10 Hz step).

Scheme 4

14. Determine (calculate) impedance Z of the RLC circuit (connect inductor and capacitor in series) as a function of frequency.

$$
Z=\frac{U_{S}}{I_{s}}
$$

15. Enter the results into the table.

$\boldsymbol{f}(\mathbf{H z})$	$\boldsymbol{U}_{\boldsymbol{s}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{s}}(\mathbf{A})$	$\boldsymbol{Z}(\mathbf{\Omega})$
50			
60			
70			
80			
90			
100			
110			
120			
130			
140			
150			

160			
170			
180			
190			
200			

16. On the single sheet plot the following functions: $F(f)=R_{L}, F(f)=Z_{C}, F(f)=Z$. Use the plot to find the resonance frequency f_{r}.
[1] Walker J., Halliday and Resnick, Principles of physics: international student version, 9 th ed., extended, Hoboken : John Wiley \& Sons, Inc., 2011., ISBN 978-0-470-56158-4
[...] or other books on physics.
