## Determination of focusing power of the lenses by using an optical bench

Focusing power $Z$ depends on the radius of curvature and the relative refraction coefficient.

$$
Z=\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

Determination of a focusing power based on lens equation.

$$
\frac{1}{f}=\frac{1}{x}+\frac{1}{y}
$$

## A Converging lens

1 Shift the lens along the bench until the image looks as sharp as possible.
2 Measure the object distance ( x ) and the image distance ( y ) in reference to lens.
3 Repeat the measurements (teacher determines the amount of repetitions), each time for difference positions of the object and the lens.
4 For each measurement, calculate focusing power $Z_{c}$ and next the mean value $\overline{Z_{c}}$.
5 Type the results in the table.

| Lp | $x$ [m] | $y[\mathrm{~m}]$ | $1 / \mathrm{x}\left[\mathrm{m}^{-1}\right]$ | $1 / y\left[\mathrm{~m}^{-1}\right]$ | $Z_{c}[\mathrm{D}]$ | $\overline{\overline{Z_{c}}}$ [D] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |

## B Diverging lens

Diverging lenses give virtual images, which one cannot see. In order to determine focusing power of diverging lens, one must create system of two adjacent lenses: converging lens (known focal distance) and diverging lens. For such a system, focusing ability is a necessary condition.

The focusing power $Z_{s}$ of system equals to sum of the focusing powers $Z_{1} \mathrm{i} Z_{2}$ :

$$
Z_{s}=Z_{1}+Z_{2}
$$

In this case:

$$
Z_{s}=Z_{c}+Z_{d}
$$

Using optical bench, determine focusing power of system $Z_{s}$.
1 Shift the lens system along the bench until the image looks as lightest as possible.
2 Measure the object distance ( $x_{s}$ ) and the image distance ( $y_{s}$ ).
3 Repeat the measurements (teacher determines the amount of repetitions), each time for difference positions of the object and the lens system.

4 For each measurement, calculate focusing power of system lens $Z_{s}$ and next the mean value ( $\overline{Z_{s}}$ ).
5 By using the above formula, calculate the mean value of focusing power of diverging lens $\left(\overline{Z_{d}}\right)$. Note, that one must use the mean value $\overline{Z_{c}}$ from the previous section.
6 Type the results in the table.

| Lp | $x_{s}$ [m] | $y_{s}[\mathrm{~m}]$ | $1 / x_{s}\left[\mathrm{~m}^{-1}\right]$ | 1/ys $\left[\mathrm{m}^{-1}\right]$ | $Z_{s}[\mathrm{D}]$ | $\overline{Z_{s}}$ [D] | $\overline{Z_{d}}$ [D] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |

## Issues

Fundamentals of geometrical optics:

- Refraction of light phenomena
- Lenses' types
- Light crossing through the lens (lens equations and image types)

Eye construction and its function.
Vision defects and its corrections.

Walker J., Halliday and Resnick, Principles of physics: international student version, 9 th ed., extended, Hoboken: John Wiley \& Sons, Inc., 2011, ISBN 978-0-470-56158-4

Davidovits P., Physics in Biology and Medicine
Rodney, Cotterill, Biophysics: An Introduction

