M7. Modeling the electrical properties of biological systems. Properties of RLC circuit

Topics:

- The basics of electrodynamics [1] Chap 21; electric charge Chap. 21-2 and Coulomb's law Chap. 21-4
- The electric field [1] Chaps. 22-1 through 22-4, 22-8 through 22-9
- Electric potential [1] Chaps. 24-1 through 24-6 and 24-10
- Capacitor and capacitance [1] Chap. 25; connecting capacitors Chap. 25-4, energy stored in a capacitor Chap. 25-5
- Electric current [1] Chaps. 26; the laws of electric current flow: Ohm's law Chaps. 26-5 through 26-6, power Chap. 26-7
- Electrical circuits [1] Chap. 27
- Direct current and alternating current (DC/AC) [1] Chaps. 26-2 and 31-6
- Modeling of the basic biological structures. The electric model of a cell membrane.
- Inductor and inductance [1] Chap. 30; Faraday's law of induction Chap. 30-3, Lenz's law – Chap. 30-4, inductors – Chap. 30-7 and energy stored in a magnetic field – Chap. 30-11
- Electromagnetic oscillations in an AC circuit [1] Chap. 31
- Inductor in DC and AC circuit [1] Chaps. 31-2 through 31-4
- Capacitor in an AC circuit [1] Chaps. 31-2 through 31-4
- Electrical impedance. Resonance in the RLC circuit. Power in an AC circuit [1] Chaps. 31-7 through 31-11

Instruction

1. Assemble the circuit shown in the Scheme 1.

Scheme 1

2. For three different voltages (three positions of the slide block on the resistor) determine the resistance R of the inductor.

3. Enter the results into the table. Remember to write down classes and ranges of the meters, which were set for the measurement.

no.	$U\left(\mathbf{V} ight)$	<i>I</i> (A)	$R(\Omega)$
1			
2			
3			

4. Assemble the circuit shown in the Scheme 2.

Scheme 2

5. Determine impedance of the inductor Z_L as a function of current frequency (change the frequency from 20 to 200 Hz, with 10 Hz step).

$$Z_L = \frac{U_s}{I_s}$$

6. Calculate inductive reactance as a function of frequency:

$$R_L = \sqrt{Z_L^2 - R^2}$$

7. Enter the results into the table.

$f(\mathbf{Hz})$	$U_{s}\left(\mathbf{V} ight)$	$I_{\rm s}({\rm A})$	$Z_L(\Omega)$	$R_L(\Omega)$
50				
60				
70				
80				
90				
100				

110		
120		
130		
140		
150		
160		
170		
180		
190		
200		

8. Assemble the circuit shown in the Scheme 3.

Scheme 3

9. Determine capacitive reactance Z_C as a function of frequency (from 20 to 200 Hz, with 10 Hz step).

$$Z_C = \frac{U_s}{I_s}$$

10. Enter the results into the table.

$f(\mathbf{Hz})$	$U_{s}\left(\mathbf{V} ight)$	$I_{\rm s}({\rm A})$	$Z_c(\Omega)$
50			
60			
70			
80			
90			
100			
110			
120			
130			
140			
150			
160			

170		
180		
190		
200		

11. Assemble the circuit as shown in the Scheme 4.

Scheme 4

12. Determine impedance *Z* of the RLC circuit (connect inductor and capacitor in series) as a function of frequency.

$$Z = \frac{U_s}{I_s}$$

13. Enter the results into the table.

$f(\mathbf{Hz})$	$U_{s}\left(\mathbf{V} ight)$	$I_{\rm s}({\rm A})$	$Z(\Omega)$
50			
60			
70			
80			
90			
100			
110			
120			
130			
140			
150			
160			
170			
180			
190			
200			

14. On the single sheet plot the following functions: $F(f) = R_L$, $F(f) = Z_C$, F(f) = Z. Use the plot to find the resonance frequency f_r .

[1] Walker J., Halliday and Resnick, Principles of physics : international student version, 9 th ed., extended, Hoboken : John Wiley & Sons, Inc., 2011. , ISBN 978-0-470-56158-4