Determination of focusing power of the lenses by using an optical bench

Focusing power Z depends on the radius of curvature and the relative refraction coefficient.

$$Z = \frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Determination of a focusing power based on lens equation.

$$\frac{1}{f} = \frac{1}{x} + \frac{1}{y}$$

A Converging lens

- 1 Place the object at the end of the optical bench opposite to the screen. Attach the focusing lens between the object and the screen.
- 2 Shift the lens along the bench until the image looks as sharp as possible.
- 3 Measure the object distance (x) and the image distance (y).
- 4 Repeat the measurements (teacher determines the amount of repetitions), each time for difference positions of the object and the lens.
- 5 For each measurement, calculate focusing power Z_c and next the mean value $\overline{Z_c}$.
- 6 Type the results in the table.

Lp	<i>x</i> [m]	y [m]	1/x [m ⁻¹]	1/y [m ⁻¹]	Z_c [D]	$\overline{Z_c}$ [D]
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

B Diverging lens

Diverging lenses give virtual images, which one cannot see. In order to determine focusing power of diverging lens, one must create system of two adjacent lenses: converging lens (known focal distance) and diverging lens. For such a system, focusing ability is a necessary condition.

The focusing power Z_s of system equals to sum of the focusing powers Z_1 i Z_2 :

$$Z_{\rm S} = Z_1 + Z_2$$

In this case:

$$Z_s = Z_c + Z_d$$

Using optical bench, determine focusing power of system Z_s .

- 1 Place the object at the end of the optical bench opposite to the screen. Attach the lens system between the object and the screen.
- 2 Shift the lens system along the bench until the image looks as sharp as possible.
- 3 Measure the object distance (x_s) and the image distance (y_s) .
- 4 Repeat the measurements (teacher determines the amount of repetitions), each time for difference positions of the object and the lens system.
- For each measurement, calculate focusing power of system lens Z_s and next the mean value $(\overline{Z_s})$.
- By using the above formula, calculate the mean value of focusing power of diverging lens ($\overline{Z_d}$). Note, that one must use the mean value $\overline{Z_c}$ from the previous section.
- 7 Type the results in the table.

Lp	x_s [m]	<i>y</i> _s [m]	$1/x_s$ [m ⁻¹]	$1/y_s$ [m ⁻¹]	$Z_{s}[D]$	$\overline{Z_s}$ [D]	$\overline{Z_d}$ [D]
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

Issues

Fundamentals of geometrical optics:

- Refraction of light phenomena
- Lens' types
- Light crossing through the lens (lens equations and image types)

Walker J., Halliday and Resnick, *Principles of physics : international student version*, 9 th ed., extended, Hoboken : John Wiley & Sons, Inc., 2011. , ISBN 978-0-470-56158-4

Davidovits P., Physics in Biology and Medicine

Rodney, Cotterill, Biophysics: An Introduction