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A b s t r a c t

The paper is a continuation of the investigations presented shortly in a previous article
(KURLANDZKA 2005), which focused on solving of a boundary-value problem for an electro-elastic
field in the vicinity of a tip of the crack of finite conductivity in an elastic, isotropic and
homogeneous dielectric. Stress distribution in the vicinity of the crack tip, mechanical stress
intensity coefficients, electric stress intensity coefficients and the intensity coefficient of an
electric field were defined in the present study. Based on the generalized Griffith criterion, the
Irwin generalized criterion for the case considered was derived.
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S t r e s z c z e n i e

Praca  jest kontynuacj¹ badañ przedstawionych  krótko we wcze�niejszej publikacji (KUR-
LANDZKA 2005). Podano tam rozwi¹zanie problemu brzegowego dla pól elektro-sprê¿ystych
w otoczeniu wierzcho³ka szczeliny o skoñczonej przewodno�ci w jednorodnym i izotropowym
dielektryku sprê¿ystym. W prezentowanej pracy przedstawiono rozk³ad naprê¿eñ w otoczeniu
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wierzcho³ka szczeliny, zdefiniowano wspó³czynniki naprê¿eñ mechanicznych i elektrycznych
oraz wspó³czynnik intensywno�ci pola elektrycznego. Opieraj¹c siê na uogólnionym kryterium
Griffitha oraz uzyskanych dla rozpatrywanego przypadku wynikach, otrzymano uogólnione
kryterium Irwina.

Introduction

The aim of the paper was to extend the Irwin criterion to the case of
a crack of finite conductivity in an elastic, isotropic and homogeneous dielectric.

If a crack in an dielectric influenced by an external electric field is
considered, the electric properties of the media inside the crack should be
determined. It seems natural if we assume that the crack is filled with air
which, if the intensity of the electric field is not high, behaves like vacuum.
However, if the intensity of the electric field attains ionization intensity, which
for air is about 2÷3·104 V/cm, the gas inside the crack behaves like a perfect
conductor. This changes considerably the behavior of the electro-elastic fields in
the vicinity of the crack tip. The electric field and electric stresses, which in the
case of a vacuum crack have no singularity in the crack tip, become singular
and contribute directly to energy, which can be used for the creation of a new
crack surface and, in consequence, a fracture of the material.

However, between these two extreme cases there must be a state in which
the gas inside the crack behaves like a conductor of finite conductivity. This
case is the subject of the present investigations. Both electric resistance and
heat effects are related to finite conductivity. Thus, it must be analyzed whether
the generalized Griffith criterion, providing the basis for investigations of the
influence the electric field on crack propagation, should be modified.

The Irwin criterion for the case of a perfectly conducting crack in an elastic
dielectric was presented in a previous paper (KURLANDZKA 2005). This criterion,
derived from the Griffith criterion generalized to the case of electro-elastic
interactions (KURLANDZKA 2005, 1998), regarded the case of vacuum and
a perfectly conducting crack in an elastic dielectric with no conductivity. Thus,
there were no reasons to take Joule-Lenz heating into account. In this study the
case of a crack of finite conductivity is considered and therefore it must be
decided whether the criterion needs modification.

Let us remind the generalized Griffith criterion for the case of a dielectric
containing a vacuum crack or a perfectly conducting crack, assuming that crack
increment takes place along the x1 axis of the Cartesian coordinate system:
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where:
Sx � cylindrical surface of radius x surrounding the crack edge,
g � material parameter called surface energy,

s, t, t � mechanical, electro-elastic and electric parts of the stress tensor
respectively,

u � displacement vector,
d � electric induction,
f � electric potential,
e � dielectric permittivity,
S � elastic energy,
h � energy of coupling of electric and elastic interactions,
n � unit normal vector external to Sx.

The dielectric is non-conductive, only the gas inside the crack behaves like
a conductor of finite conductivity. The surface Sx surrounding the crack tip is
closed and as its diameter tends to zero, a contribution to the expression on the
left side is only due to the singular parts of the functions appearing in the
integrand. Let us remind the general solution for the electric field and potential
(KURLANDZKA 2005).

The electric potential and electric field in the dielectric:
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The electric potential and electric field inside the crack:
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where:
r, a � polar coordinates connected with the Cartesian coordinates x1, x2 by

means of the relations:

aa sin,cos 21 rxrx ==

The solution satisfies the equations in the vicinity of the crack tip W: r < r0,
0 < a < 2p and the corresponding boundary conditions on the crack surface
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cn, dn are arbitrary constants that can be determined from the conditions on the
boundary of the domain r = r0, 0 < a < 2p. They depend on the external electric
field in the outside domain r > r0.

There is no singularity in the potential and electric field inside the crack.
Thus, there is no contribution to energy which could be used for crack length
increment, and so the Griffith criterion needs no modification in the case
considered.

The distribution of the fields present in the integrand, with accuracy to the
terms contributing to fracture energy, will be given in the next section. The
functions will be used further in the procedure of deriving of the generalized
Irwin criterion.

Let us keep in mind that the solution of the boundary-value problem for
a crack of finite conductivity in an elastic isotropic and homogeneous dielectric
is obtained for a quasi-linear approximation of the Toupin-Eringen (TOUPIN 1956,
ERINGEN 1962) nonlinear model of the dielectric, with some modifications by the
author (KURLANDZKA 1998). The approximation is obtained assuming small strains
and strong electric intensity. These assumptions lead to the equations and the
boundary conditions for an electric field in a rigid body and the Lamé equations
and the corresponding boundary conditions in which electric stresses, nonlinear
with respect to electric intensity, appear. The solution is general, satisfies
equations in the neighborhood of the crack tip, the corresponding boundary
conditions on the crack surface and the condition of finite energy at the crack
tip and includes a number of arbitrary constants which can be determined from
the corresponding conditions on the boundary of the considered domain.
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Electro-elastic fields in the vicinity of the crack tip

The functions describing the electric potential and intensity are given in the
previous section. Assuming that the series present in the solution are uniformly
convergent, the electric stresses take the form:
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where
a2, a5 � material constants,

c1, d1, d2� arbitrary constants present in the solution for an electric field.

If the arbitrary constants they are determined from the conditions on the
common boundary of the neighborhood of the crack tip and the outside domain,
the electric field and electric stresses are uniquely determined.

Now let us remind the general solution for the displacements generated by
the electric field (KURLANDZKA 2005):
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(8)

where:
l, µ � Lamé constants. The functions include the arbitrary constants C1, D1

which can be determined from the corresponding conditions on the common
boundary of the neighborhood of the crack tip and the outside domain, as well
as the arbitrary constants connected directly with the electric field c1, d1, d2.

Inserting the above functions into the constitutive relations for mechanical
stresses, we get functions describing mechanical stresses in the vicinity of the
crack tip in the following form:
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(9)

(10)

The mechanical stresses include parts dependent directly on the electric field
in the neighborhood of the crack tip, and parts known from fracture mechanics,
dependent on the arbitrary constants C1, D1.
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Intensity coefficients

The definitions of the intensity coefficients generalized to the case of
electromagnetic fracture are given in (KURLANDZKA 2005) for the case of
the vacuum and perfectly conducting crack. Now they will be given for the
considered case of the conducting crack of finite conductivity.

Taking into account formulae (9), (10), mechanical stress intensity
coefficients are obtained in the form:
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are the same as the stress intensity coefficients in fracture mechanics. The
electric parts of the mechanical stress intensity coefficients are
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They depend directly on the arbitrary constants present in the solution for
the electric field.

The electric stress intensity coefficients obtained on the basis of the
definitions and formulae (6) are:
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Let us notice that the electric parts of the mechanical stress intensity
coefficients and the electric stress intensity coefficients depend on the arbitrary
constants present in the solution for the electric field c1, d1, d2. Hence, the
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electric parts of the mechanical stress intensity coefficients can be expressed by
means of the electric stress intensity coefficients:

( )( )( ) ( )( )( )
( )( )( )

( )( ) ( )( )( )

( )( )( )
E

II
ME

II

E
I

ME
I

K
a

aaa
K

K
a

aaa
K

mlmle

mlmlemlml

mlmle

mlmlemlml

735

735231832252

7352

7351132

5

5
22

2

525

+++

+++++++
-=

++-

+++++++
-=

(14)

The displacements on the crack surface and stresses in the material on
prolongation of the crack can be expressed by means of the generalized stress
intensity coefficients:
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The electric field intensity coefficients according to the definition (KURLANDZKA

1998, 2005) are:
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The electric potential in a dielectric on prolongation of the crack and the
normal component of electric induction on the crack surface can be expressed
by means of the electric field intensity coefficient in the following form:
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The above formulae will be used in the procedure of deriving the
generalized Irwin criterion for the case considered.

Irwin criterion

The starting point for the derivation of the electric fracture criterion in the
form of the generalized Irwin criterion is the Griffith criterion (1). Let us
introduce two Cartesian coordinates systems: stationary frame (x1, x2) with the
origin located at the crack tip before elongation, and moving frame (x1¢, x2¢)
whose origin is also located at the crack tip, but moves together with the crack tip.

Fig. 1. Coordinate systems: fixed and moving with the crack

x x, 2?2

x x, 1?1

x2

x x, 1?1

Dl

x2?
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The coordinates of the points in the stationary and moving frame are
interrelated by means of the formula:

1 1 2 2Ä .x ' x l, x ' x= + =

The integral in (1) is taken over the surface of the tube surrounding the
crack edge and moving with the crack. The energy used for the creation of
a new surface of the crack is equal to the limit value of the integral, when the
diameter of the tube tends to zero. The limit value of the integral is finite. It
results from the energy existence condition imposed on the solution of the
problem in the vicinity of the crack tip (KURLANDZKA 2005, 1998). Then the
contour of integration is arbitrary and the iterative limits are equal to the limit in
the common sense. Let us take the contour as Sx:
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integration over the vertical lines gives no contribution to the energy used for
creating the new crack surface.
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Taking into account the definition of the derivative with respect to x1 and
the fact that the increment of the respective functions is generated by crack
elongation, the criteria can be written in the stationary frame in the form:
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where Du and Dfd are the increments of respective functions due to crack
elongation by Dl.

Let us introduce a denotation:
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All the functions appearing in the integrand can be determined from
formulae (2), (3), (6)�(10), taking into account the formulae of transformation
from polar to Cartesian coordinates, with the use of the following relations:
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by means of (15)�(16).
Taking the above into account, the criterion is reduced to the following relation:
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⋅ + ∆ + − +  + + ∆ +  + ∆ + − +    

∫

Following the Irwin procedure, which is equivalent to the assumption

( ),0,1 +D+»D lxuu kk  after inserting the values of respective functions into the

integrand, integration and the limit procedure, the generalized Irwin criterion is
obtained in the following form:
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(19)

Making use of formula (14), the criterion can be expressed as the dependence
on the coefficients KI

MC, KI
E, KII

MC, KII
E, I
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(20)

The above formula seems more convenient for practical application than the
previous one. Let us remind that the coefficients KI

E, KII
E, I are determined if

the electric field in the dielectric is specified (KURLANDZKA 1982, 1988, 1991).

Conclusions

It should be emphasized that the case of a crack of finite conductivity
differs significantly from the case of a perfectly conducting crack. In the latter
case the stress intensity coefficients KI

ME, KI
E are equal to zero. In the case

considered they are not equal to zero and so electric stresses normal to the
crack surface influence directly crack propagation.

Formula (20) looks more complicated than (19). However, the coefficients
standing by the products and squares of the stress intensity coefficients KI

MC,
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KI
E, KII

MC, KII
E are in the case of a fixed material simply numerical coefficients.

If the electric field in an dielectric is uniquely determined, the electric stress
coefficients can be easily determined from formula (13) (KURLANDZKA 1982, 1988,
1991). The stress intensity coefficients KI

MC, KII
MC can be determined

experimentally basing on strain measurement. However, it should be remembered
that these coefficients are only a part of the stress intensity coefficient related to
strains. Strain measurement leads to the determination of the coefficients KI

M,
KII

M (11). The coefficients KI
MC, KII

MC should be determined from formula (14)
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Let us consider the criterion for dielectric material

0.9 PMN:0.1PT.  1 2 3 3
3 3

PMN : Pb Mg Nb O , PT: Pb Ti O .

The material constants are YANG, SUO (1994):

1elbaT

µ l e a2 a5

aPG44.44 aPG51.84 01·40466 21� )Vk/mc(aPM 2 )Vk/mc(aPM610.0� 2 )Vk/mc(aPM531.0� 2

If the above values of the material constants are inserted into (20), the
criterion assumes the form:

( ) ( ) ( )
( )

2 2 2

2 7 2

0,0083 0,0584 0,1160

0,0230 0,0320 0,6640 10 .

MC MC MC E E
I II I I I

MC E E
II II II

K K K K K

K K K I

γ

−

 = + + + + 
 

− − + ×

Let us notice that the numerical coefficients standing by the products of the
mechanical stress intensity coefficients and the electric stress intensity
coefficients and by the squares of the electric stress intensity coefficients have
higher values than those standing by the squares of the classical mechanical
stress intensity coefficients. The minus sign by the term including KII

E indicates
that shear electric stresses counteract crack propagation. The direct influence of
the electric field on crack propagation seems to be non-significant as compared
with the influence of mechanical and electric stresses.
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