
5On capability of using a four point sphere probe to flow velocity measurement

TECHNICAL SCIENCES
Abbrev.: Techn. Sc., No 8, Y 2005

ON CAPABILITY OF USING A FOUR POINT
SPHERE PROBE TO FLOW VELOCITY

MEASUREMENT

Zygmunt Wierciñski
Institute of Fluid-Flow Machinery, PAS, Gdañsk

Faculty of Technical Sciences
University of Warmia and Mazury in Olsztyn

K e y  w o r d s: measurement technique, flow velocity measurement, sphere probe.

A b s t r a c t

Measurement of the velocity is, next to the pressure measurement, among the most
frequent measurements in mechanics of fluids and power engineering. That measurement
is taken using, among others, the five-hole sphere probe. This paper presents the analysis
of velocity measurement using a sphere probe showing that positioning of four measure-
ment holes on the surface of the sphere is sufficient for measurement of the velocity
direction and module. As a result we obtain a system of four nonlinear algebraic  equations,
which, however, not always possesses a solution. The paper presents four selected configu-
rations of measurement holes on the sphere surface, three of which assure unequivocal-
ness of problem solution. Additionally, the theoretical characteristic of five-hole sphere
probe and its comparison with the experimentally obtained characteristic is presented.
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S t r e s z c z e n i e

Pomiar wektora prêdko�ci nale¿y, oprócz pomiaru ci�nienia, do najczê�ciej wykonywa-
nych w mechanice p³ynów i w eksploatacji maszyn i urz¹dzeñ energetycznych. Pomiaru
tego dokonuje siê m.in. za pomoc¹ sondy kulowej piêciootworowej. W pracy przedstawiono
analizê pomiaru wektora prêdko�ci za pomoc¹ sondy kulowej, wykazuj¹c, ¿e do pomiaru
kierunku i modu³u wektora prêdko�ci wystarcza umieszczenie czterech otworów pomiaro-
wych na powierzchni kuli. W rezultacie otrzymujemy uk³ad czterech równañ nieliniowych,
który jednak  nie zawsze ma rozwi¹zania. Przedstawiono cztery wybrane konfiguracje czte-
rech otworów pomiarowych na powierzchni kuli, z których trzy  zapewniaj¹ jednoznaczno�æ
rozwi¹zania problemu. Ponadto zaprezentowano teoretyczn¹ charakterystykê piêciootworo-
wej sondy kulowej i jej porównanie z charakterystyka otrzyman¹ eksperymentalnie.

1. Introduction

Sphere probe is one of the most frequently used measurement instru-
ment applied for measurement of velocity in a flow as it allows determining
the velocity module and two angles in the coordinate system related to the
probe. The measurement is taken through measurement of the distribution
of pressure in selected points on the sphere surface, most frequently in five
points distributed over the intersecting planes forming a cross on the sphe-
re surface. The sphere probe surpasses the thermal anemometer probe in
durability and simplicity of use. However, the sphere probe is most frequen-
tly used for measurement of the average velocity while the hot anemome-
ter probe for measurement of velocity changing over time. If we additional-
ly consider small dimensions, e.g. the diameter of 5 mm and possibility of
applying pressure sensors of small size and fast dynamic reaction in measu-
rement points on the surface, we can obtain the measurement tool allowing
analysis of fast changing velocity fluctuations within a small measurement
space. Lack of adequately small sensors offering low sensitivity threshold
has made construction of such probes impossible so far.

Measurement of the required parameter using the least expensive me-
ans is one of the basic principles in the experimental technique. Five me-
asurement hole sphere probes on the sphere surface are used as a valid
standard of a sphere probe in the current measurement practice.

The objective of this paper is to show that assuming incompressibility of
the flow measurement of the velocity using only four measurement holes on
the sphere surface, i.e. no fewer than four measurement points is possible.
Obviously, application of the sphere with five or more measurement holes
(seven or nine) assures a better mapping of the velocity fields and offers
a better accuracy of the measurement, nevertheless miniaturization of the
probe is simpler in case of a lower number of pressure measurement points.

In this paper, on the basis of the potential flow around the sphere, it
was shown that solution of a system of four nonlinear equations, which,
however, do not have a single-unequivocal solution for every distribution of
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pressure measurement points on the sphere surface, would suffice to solve
that measurement issue. The paper presents four configurations of four me-
asurement points (square, rhombus, right triangle and equilateral triangle)
where three of those configurations (rhombus, right triangle and equilateral
triangle) assure unequivocalness of the solution of the nonlinear system
of equations.

Additionally, the paper presents the theoretical characteristic of five-
hole sphere probe and compares it to the characteristic obtained experimen-
tally confirming their sufficient compatibility within the range of angles of
�10°< a <10° and �10°< b <10°.

2. Distribution of pressure on the sphere surface
as the base for velocity measurement

The potential flow of a homogenous flow around the sphere on the basis
of which the determination of the distribution of velocity and pressure on
the surface of the sphere is possible offers the theoretical base for measure-
ment using the sphere probe. In other words, knowledge of the pressure
distribution on the surface of the sphere is necessary for measurement of
velocity using the sphere probe as measurement of velocity is the measure-
ment of the difference of static pressures in a number, usually five, measu-
rement points in the surface of the sphere. The most frequently found sphe-
re probe is then the five-hole probe possessing five holes positioned on the
lines forming the even-armed cross that cross at the right angle on the
surface of the sphere.

The flow around the sphere is one of the axial symmetry problems and
as a consequence its description requires knowledge of the sphere radius r,
the momentary position of the flow stagnation point and the angle q betwe-
en the flow stagnation point S and point P selected at random on the surfa-
ce of the sphere.

Investigating the flow around a sphere by a fluid possessing the velocity
U and density r, the distribution of velocity around the sphere is expressed
by the following formula (e.g. GRYBO� 1998):
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Applying the Bernoulli equation, we will determine the distribution of
pressure in point P of our interest on the sphere surface according to the
following formula (GRYBO� 1998):
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where p0 is the tangent pressure in the flow. As known from the experi-
ment (FAGE 1936, quoted after WHITE 1974), the distribution of velocity aro-
und a sphere differs from the one given in the solution of flow around a sphe-
re by a perfect fluid. The real distribution of velocity around a sphere is
expressed by the following formula:

)...( 753 0001984009873029140
2
3 θθθθ −+−= Uv  (4)

That formula is right for the following range of the angle q, 0 < q< 1.48
radian and the Reynolds numbers below Rer = 2×105 (sphere radius based
Reynolds number). For that velocity distribution the velocity maximum is
found for the angle q = 1.291 radian = 72°, while for the potential flow aro-
und a sphere that maximum is found for q = p/2 =90°, which means that the
difference is significant. Additionally, in the real flow, the break-off point of
the boundary layer on the sphere surface changes and depends on the sta-
tus of the boundary layer on the sphere surface (laminar or turbulent) so it
is a dependent of the Reynolds number.

By applying the expansion of the sinus function, it is possible to deter-
mine the difference between the theoretical potential and the real distribu-
tion of velocity on a sphere:

...)...( ++−=∆ 753 28180090401240
2
3 θθθUv (5)

Despite those significant differences, we will continue our reasoning tre-
ating the potential flow around a sphere as a certain model for the sphere
probe.

3. Measurement probe in a flow

The flow velocity measurement problem will be analyzed in two coordi-
nate systems. All of them will be related to the sphere probe, which will
serve measurement of velocity, or rather measurement of pressure in a num-
ber of points on the surface of the sphere. To solve the velocity measure-
ment problem a transformation must be formulated allowing the transition
between those two coordinate systems.
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The first coordinate system is related to the position of the velocity
relative to the probe. That system was presented in Fig. 1. In that system
two planes perpendicular to each other and cutting through the axis of the
probe z were determined. The zy plane is the deviation plane while the zx
plane is the pitch plane. The projections of the velocity on those two planes
determine the deviation angle a and the pitch angle b.  In such a coordina-
te system the calibration of the sphere probe is usually done. To achieve
the situation where the direction of velocity matches the probe axis, the
sphere probe should be rotated by angles (a, b) respectively. The five-hole
sphere probe possesses pressure measurement points distributed appropria-
tely symmetrically in the deviation and pitch planes while one of the holes
is positioned on the axis of the probe.

a

y

x
S

z

U

b

Fig. 1. System of coordinates for the sphere measurement probe
and its positioning relative to velocity

In formula (3) for distribution of pressure in the surface of the sphere,
we have an expression containing angle q, as a consequence, an expression
of angle q depending on the coordinates of measurement point P and sta-
gnation point S, Fig. 2.

Fig. 2. Axial symmetry of flow around a sphere with the radius r: S � flow stagnation point,
P � point in which the flow is analyzed (velocity and pressure),

q � angle between points P and S
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For that purpose we will try to determine the dependences between the
system related to the measurement probe and the Cartesian system and
after calculation of the linear distance between two points on the sphere we
will try to determine the angle q formed on that distance.

It can be shown that all points possessing the coordinate a or b are
positioned on the ellipses corresponding to the following formulas created
by projection of the great circle in the plane xy:
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Those equations represent a simple system of equations with the unk-
nowns x and y and the solutions of that system are provided by the follo-
wing formulas:
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The z coordinate can be easily calculated from the Pythagorean the-
orem:
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Next, searching for the value q of the angle between two points on the
surface of a sphere, we will use two formulas: for the distance between two
points 1 and 2 and for the central angle formed at the distance of those two
points:
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Inserting equations (7), (8) and (9) into (10) and using the identity:
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after simple, but quite lengthy transformations, we obtained the expression:
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It is clear that in the system of Cartesian coordinates the calculations
may be rather complicated and, possibly, even impossible. That is why it is
necessary to apply the spherical coordinates system much more suitable for
description of the measurement taken using a sphere probe.

The second coordinate system is permanently linked to the measure-
ment probe axes (r = 1, j, y), Fig. 3. In that system the position coordinates
of pressure measurement points on the surface of the sphere (r = 1, ji, yi)
are defined. Also in that system the temporary position of the flow stagna-
tion point on the sphere probe will be searched for; as a consequence the
theoretical pressure field on the sphere surface is determined in relation to
that temporary stagnation point.

y
z

P

f

x

y

Fig. 3. Spherical coordinate system (r, j, y) for sphere probe, z � probe axis

Below, in formulas (13) the generally applied spherical coordinates are
presented with a minor deviation as instead of the symbol q the symbol y
was used leaving the q for the coordinate of the temporary axially symme-
trical flow around the sphere, i.e. the flow around independent off the f
coordinate was retained.

ψϕψϕψ cossinsincossin rzryrx === (13)

As in practice the a, b system is applied, it is necessary to find a transi-
tion between those two coordinate systems. For that purpose, the Cartesian
coordinates from the expression (7 and 8) are treated as corresponding to
the spherical coordinates (13). Following simple transformations we obtain
two formulas linking angles f and y with angles a and  b respectively:

βαψ
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αϕ 222 tgtgtg
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tg
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and the other way round, angles a and b with angles f and y:

ϕψβϕψα costgtg,sintgtg == (15)

As in the formula for the distribution of pressure on the surface of
a sphere the q is present, we must find an appropriate expression linking
angle q with angles f1 and y1 as well as f2 and y2 of the two points on
which angle q is spread.

Inputting (13) and (10) into (9) and again applying the identity (1), follo-
wing a series of transformations, we obtain the expression:

( ) 212121 ψψϕϕψψθ coscoscossinsincos +−= (16)

It can be noticed easily that for j1 � j2 = 90°, also (16) assumes the form
of Pythagorean theorem for the spherical triangle built on the angle (sec-
tion) q and two angles (sections) y1 and y2, (STIEPANOW 1960). The spherical
triangle based on the section q and the vertex in the point where the axis
cuts through the sphere surface. For j1 = j2 also (16) will have the form
of the expression for the cosines of the difference between the angles y1
and y2, and for j1 � j2 = 180° � cosine of the sum of angles y1 and y2, as
section q is positioned on the circumference of the great circle cutting thro-
ugh the z axis. As a consequence, the above relations confirm that formula
(16) is true.

If expression (14) (of course appropriately transformed) is input into for-
mula (16), then we will obtain the expression identical with the formula
(12), which also confirms that the calculations made so far are true.

Expression (16) already has a much simple form than expression (12)
and it will be used for further calculations.

As we have obtained a simple expression for cos q, it is also worth
transforming the equation (3) to the form containing the cosine function
instead of the sine. We will use the simple trigonometric one here:
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To facilitate further calculations, the equation describing the pressure
distribution on the sphere surface can be presented in a more compact form:

22
0

2
8
9

8
5
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In the calculations for the probe we will apply a system of indices diffe-
rent from that used so far. The index will represent the value (of, e.g. pres-
sure, angle q, coordinates) for the measurement point marked by that in-
dex. The values without indices apply to the stagnation point.
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As a consequence, the pressure in the measurement point i will be
expressed by the formula:

ii BAp θ2cos+= (19)

where:

( ) iiii ψψϕϕψψθ coscoscossinsincos +−= (20)

and as a consequence the pressure may be expressed as:

( )( )2iiii BAp ψψϕϕψψ coscoscossinsin +−+= (21)

In that equation we have four unknowns: A, B, y and j. As a consequ-
ence, it is enough to measure the pressure in four points on sphere surface,
i.e.  for ji yi , i = 1...4 only to determine the velocity in a flow. In that way
we obtain a system of four nonlinear equations with four unknowns the
conditions of solution unequivocalness should be tested. To find those unk-
nowns we must solve the system of four independent equations, i.e. input
into equation (21) four different sets of coordinates, that is measure pressu-
re in four different points of the sphere.

4. Five-hole sphere probe

Before we get to the solution of the problem of velocity measurement
using a probe with four measurement points, however, we will solve the
problem of velocity measurement using the five-hole
sphere probe as use of such a probe is a standard for
velocity measurements. The coordinates of the five
holes on a standard sphere probe surface are presen-
ted in Table 1 while the graphic presentation of posi-
tioning the measurement points in a five-hole sphere
probe is shown in Fig. 4.

That numbering of points is probably most frequ-
ently found in the literature (BERNARD, HORODKO 1990).

The equations of pressures for those five points
are presented in formula (21) according to the gene-
ral formulas for pressure on sphere surface:

( )( ) 512
...coscoscossinsin =+−+= iBAp iiii ψψϕϕψψ (22)

After inputting appropriate values from Table 1, we obtain the following
system of equations:

1

5

x

3 2 y
a

4

b

Fig. 4. Schematic
presentation of positio-

ning of the holes on
a five-hole sphere probe
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Solving that system also through elimination of A and B, and particular-
ly creating appropriate differences of pressures it is easy to write the for-
mulas for the deviation angle a and pitch angle b respectively:
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The right sides of those formulas are used for calibration of the sphere
probe and identified as coefficients KALPHA  and KBETA, e.g. POENSGEN (1989),
and  SMOLNY et al. (1994). As we can see for an ideal standard sphere probe,
coefficients KALPHA and KBETA can be calculated using very simple trigono-
metric dependences. Using equations (23) and knowing the values of angles
a and b, the values of coefficients A and B can be calculated from the follo-
wing formulas:
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βα
ψ

tgtg
cos

22
54

1
32

1
2

1
pp

p
pp

pBpA
−

−=
−

−=−= (26)

from where it is easy to calculate the dynamic pressure and the static pres-
sure in the flow.

Recapitulating the results of chapter 4 it can be stated that the perfect
standard five-hole sphere probe does not require any calibration to determine
the velocity in a perfect fluid. It is worth highlighting once again that in case
of standard sphere probe we deal with a system of five nonlinear algebraic
equations with four unknowns and thanks to the double symmetry of measu-
rement points the solution of that system of equations is really very simple.

In Fig. 5 the experimentally obtained characteristic of the sphere probe
is presented (SMOLNY et al. 1994), while Fig. 6 presents the characteristic of
the perfect five-hole sphere probe. The comparison of those characteristics
shows imperfections in production of the real probe such as skew of the
measurement holes in relation to the reference plains and lack of probe
positioning in z axis.

In the theoretical characteristic the lack of uniformity in Kbeta incre-
ases depending on the linear increase of the angle is observed as a consequ-
ence of the dependence of Kbeta from the tangent of the double angle of
deviation and pitch.
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Fig. 5. Characteristic of a five-hole sphere probe (SMOLNY et al. 1994)
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Nevertheless, it can generally be stated that both those characteristics are
sufficiently accurate for the range of angles  �10°< a < 10°  and �10°< b < 10°.
Additionally the probe from the example in the paper by SMOLNY et al. (1994)
is basically a hemisphere and as a consequence its shape differs significantly
from the perfect sphere. In short, it seems that much can still be done to
bring the experimental characteristic closer to the theoretical one.

5. Four-hole sphere probe

5.1. Solution of the nonlinear algebraic equations system

As mentioned above, four measurement points should suffice to deter-
mine all the unknowns so a system of four algebraic equations with four
unknowns should be developed.

An infinite number of setups of four measurement points could be pro-
posed allowing calculation of the wanted unknowns. However, we will limit
ourselves to four measurement setups that seem to be the simplest, Fig. 7:
a) a symmetrical rectangular setup is created by removing the central point

from the five-hole probe setup,
b) a symmetrical rhomboidal setup similar to the one in point a) but with the

measurement points positioned at two different distances from the center
point,

c) the right triangle developed by removing one of the side measurement
points from the five-hole probe,

d) the equilateral triangle with the measurement points at vertexes and center
of the triangle.
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Fig. 6. Theoretical characteristic of a five-hole sphere probe
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At the beginning of our considerations we should verify whether the
system of equations developed using the measurement of pressure in four
points on the sphere surface has a solution.

( )( ) 412 ...coscoscossinsin =+−+= iBAp iiii ψψϕϕψψ (27)

It is necessary to specify a certain criterion determining whether the
equations in the system are independent.

The equations (27) in general are not linear equations so we may not
apply a simple criterion for linear independence to them. Additionally it may
be found that those equations are independent only in some points of phase
space (A, B, j, y), while in the other points of that space they may be
dependent and then the system of equations in such cases would be impos-
sible to provide one unequivocal solution.

To test independence of the equations we will write the equations (27)
in the following format:

( ) 0=ψϕ ,,,BAfi (28)
where:

( ) ( )( )2iiiii BApBAf ψψϕϕψψψϕ coscoscossinsin,,, +−++−= (29)

The condition of independence of the equations (27) is that the determi-
nant will not zero (SCHWETLICK 1979):
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where xj represents consecutive unknowns A, B, j and y. As it is easy to
verify there is a fourth order determinant.
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Fig. 7. Setup of four measurement points on sphere surface
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As all values of the first column of the determinant are equal to one, in
calculating it the matrix can be made smaller by deducting raw 1 from the
consecutive rows 2, 3 and 4 obtaining for calculation the third order deter-
minant. For the general case, it is not easy to calculate the value of deter-
minant W, and as a consequence we will limit ourselves to calculating it for
the individual cases.

5.2. The square setup

We will analyze the case from point a) in Fig. 7. For the general solu-
tion of that setup we assume that yi = yi = yc i.e. the fixed value of angle yi,
while the angles j1 = 0,   j2 = p/2,  j3 = p i j4 = 3p/2.

However, already for the first condition, i.e. yi = yj = yc and any values
of ji it can be shown that the determinant W is equal to zero as:

)sin())(sin(sinsin 11
22

1 2 ϕϕϕϕϕψψ −−−= iicib (32)

where the terms bi1 were formed through deductions of the terms of the
first series of the determinant from the others, i.e. i = 2, 3 and 4. Using the
formulas for the sum and difference of cosines it can be shown easily that
all three terms bi1 = 0, when

( )150 ϕϕϕ −= i. (33)

and that is enough for the value of the determinant W to be equal to zero.
And that means that if the flow stagnation point is situated on the diagonal
of the angles of two measurement points ji and jj, the system of equations
has no solution indifferent of the value of angle yc.

On the other hand the value of the determinant W for a four-hole probe
developed from a five-hole probe by removing the center point can be calcu-
lated more easily as: yi = yj = yc = p/4, and the angles y1 = 0,  y2 = p/2,  y3 = p
and y4 = 3p/2 can be calculated from the following formula:

( )ϕϕψψ 22322 cossincossin −= BW (34)

It can be seen that in this particular case the determinant W zeroes
(the system has no unequivocal solution) in the following circumstances:
a) B = 0 � in case there is no flow, and as a consequences angles j and y cannot

be determined (a trivial case),
b) y = 0 � it is impossible to determine the angle j unequivocally, the stagna-

tion point matches the probe axis,
c) y = 90° � that case will not be considered as formula (3) is not satisfied for

such large angles that go beyond the sphere probe measurement range,
d) tgj = ±1  i.e. 42 //)( πϕϕϕ =−= ji  � it is a special case of condition (33). As

a consequence such a setup of four measurement points positioned in cor-
ners of the square is unsuitable for practical application.
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Similar result may be obtained while searching for a solution of the
system of equations for such a rectangular (square) setup of measurement
points as solving that system of equations we will obtain:
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Deducting from sides the terms we will obtain:

ϕψψ coscossinBpp 231 =− (36)
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It can be seen that the expression (39) makes no sense if (p1 � p3) =
± (p2 � p4). Then we deal with an indeterminate form type 0/0. On the basis
of the equation (38) we may determine that it occurs for tgj = ±1. In that
case measurement points 1 and 2 are at the same distance from the stagna-
tion point  and at the same time points 3 and 4 are also at the same
distance from the stagnation point (or in pairs : points 1 and 4 and points
2 and 3 respectively). As a consequence in the system of equations (35) only
two equations are independent and we lack three unknowns: A, B and y.
Of course in that situation the system possesses no unequivocal solution. As
a consequence a different setup of measurement points or an additional fifth
equation is required.

5.3. Rhomboidal setup

Let us review the other proposed four point setups because, as stated in
the previous section the setup of four points in a square does not provide
the unequivocal solution.
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The coordinates of measurement points for the rhomboidal setup are:
j1 = 0, j2 = 90°, j3 = 180°, j4 = 270°, y1 = y3, y2 = y4, y1 ¹ y2 respectively
and we determine precisely the values of y1 and y2.

Similar to the square setup of the measurement points we will first
determine the value of determinant W for the rhomboidal setup. After quite
arduous calculations that determinant can be presented using the following
formula:

[ ])sincos(cos)sinsin(cossincos
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It can be shown easily that applying y1 = y2 = p/4 we will obtain the
value of the determinant W the same as in case of the square setup accor-
ding to the formula (34).

To find the points for which the determinant value is zero and the sys-
tem of equations will not have solutions, it is enough to make the expres-
sion in square brackets equal to zero.

Assuming that y1 = p/4 we can analyze the existing solutions of the sys-
tem of equations in relation to the position of the second point when we, of
course, assume that y2 < p/4. Then the analysis of condition (40) can be
brought to analysis of the following condition (41):
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Of course the value of sin2y must be lower than one (or at least equal
to it) and that condition is satisfied when the following condition is satisfied:
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From that condition the limit value of the angle j can be determined
for which y < p/2, i.e. we are searching for satisfaction of that condition for
the front part of the probe. To immediately determine the minimum range
of the angle y, where the system of equation cannot be solved, it is enough
to assume that j equals 0 or p and then

2
2 2ψψ cossin = (43)

Assuming next y2 = p/6 we see from formula (43), that the indeterminacy
point of the system of equations is positioned in point j = 0 and y = ±p/4, i.e.
in the position of measurement points number 1 and 3, and as a consequen-
ce, that point is positioned at the edge of the measurement area. If, on the
other hand, we assume y2 = p/8, the indeterminacy point for the system of
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equations is also positioned at j = 0 and y = ± 57,23 o, i.e. outside the area
of velocity measurement using the sphere probe. As a consequence, the probe
with rhomboidal setup and pressure measurement points for y1 = p/4 and
y2 = p/8 fully satisfies the conditions of equivocal velocity measurement.

After determining the area of determinacy for solutions of the system of
equations we may further search for the solution to the problem of velocity
measurement using four-hole sphere probe with a rhomboidal setup.

Solving the system of equations for that setup of measurement points
we obtain:
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From that formula it is easy to calculate the value of angle j, if only
the numerator and denominator are different from zero. For the case whe-
re p1 � p3 = 0 and/or p2 � p4 = 0, the problem simplifies as we will have a = 0
and/or b = 0 respectively. Now we should only find the second equation allo-
wing calculation of angle y, if angle j is known. This can be achieved in
a number of ways:
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and
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Notation  p1/3 should be understood as alternative use of p1 or p3 and
then in the expression in the denominator the minus or plus should be
used as appropriate.

Slightly simpler formulas are obtained (in the denominator the compo-
nent with the tangent is out) from the further two formulas:
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The procedure of solving the problem of velocity measurement using
a four-hole sphere probe with rhomboidal setup of measurement points is as
follows: first, using the transformed equation (44) the value of the tangent
of angle j is calculated
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then we determine the values of sin j and cos j, and in particular the
so-called quarter of angle j i.e. the signs of those function from analysis of
the signs of differences p1 � p3 i p2 � p4, in which the following table can be
helpful:
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For the case p1 � p3 = 0 and p2 � p4 = 0 angle j is indeterminate while
angle y = 0. In the following step, using one of the equations (45) to (48) the
angle y value is calculated from a simple quadratic equation, which may be
solved by a standard method. The root of the solution should be selected in
a way satisfying the condition 0 < y < p /2.

Further, the value of coefficient A can be calculated easily from one of
the following formulas:
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and the B value from the formula:
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and further it is simple to calculate the value of velocity module U when
medium density (or dynamic pressure 0.5rU2 ) and the static pressure p0
are known.

5.4. The right triangle setup

In the analysis of the right triangle setup we will limit the discussion to
a simple setup where angles y2 = y3 = y4 = 45°, which slightly simplifies the
calculations. The coordinates of the measurement points then will be as
follows:

y1 = 0,  y2 = y3 = y4 = 45°,   j2 = 0,  j3 = 90°,  j4 = �90°.

Developing the system of equations for that setup of measurement po-
ints we obtain the following formula (as points 1, 3 and 4 are positioned on
one plane):
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Using that formula we can determine angle a and the only thing that is
left is to determine angle b. In this case we also have two options:
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to calculate tgb.
Calculation of angle b is also possible from another formula:
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Those are simple quadratic equations that can be solved easily by stan-
dard methods. Further calculations of A and B values are easy.

5.5. Equilateral triangle setup

In this case the coordinates of the measurement points are: y1 = 0,
y2 = y3 = y4 = 45° j1 = 0, j2 = 120°, j3 = �120° respectively. Solving the system
of equations for that setup we obtain:
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and:
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The obtained system of equations is simplified to the form:
This is a system of two quadratic equations with unknowns tga and tgb.

After appropriate transformations and elimination of one unknown, i.e. tgb,
we obtain the following quartic equation:
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This is a quartic equation because of tga. We can develop it using Car-
tesian-Euler substitutions or by applying the method given by NEUMARK

(1965).  Next, as usually, the values of A and B must be calculated from the
series of equations followed by calculation of dynamic and static pressures.

6. Conclusion

The paper presents the analysis of velocity measurement using a sphe-
re probe. The five-hole sphere probe is a standard solution. The new idea
was to use a system of spherical coordinates in the calculations. We succe-
eded in finding a transition between that coordinate system and the coordi-
nate system using the deviation angle a and pitch angle b applied as a stan-
dard. We also found a criterion according to which the practical suitability
of four-hole sphere probe can be assessed as it allows verifying whether the
system of equations describing the pressures in measurement points is a sys-
tem of independent equations in every case. The paper shows that velocity
measurement is possible by applying a four-hole sphere probe. However,
positioning of measurement points in vertexes of a square (i.e. in the setup
obtained by removing the center point from the five-hole measurement pro-
be) gives a system of equations that is indeterminate. On the other hand,
positioning of measurement points in vortexes of a rhombus provides one-
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unequivocal solution to the problem of velocity measurement. In this case
we obtain a simple equation for angle j while the value of angle y should
be calculated form a quadratic equation. Similarly, in case of measurement
points setup in the form of a right triangle we obtain a simple equation for
angle a (or b) and the second angle b (or a) should be calculated from a qu-
adratic equation. In case of the measurement setup in the form of equilate-
ral triangle the situation is slightly more complex as a system of quadratic
equations must be solved, which in consequence means solving a single qu-
artic equation.
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