EFFECT OF TEMPERATURE AND CONCENTRATION ON RHEOLOGICAL PROPERTIES OF BEETROOT JUICE

Zbigniew Kobus1, Rafał Nadulski1, Tomasz Guz1, Izabela Kamińska2

1 Department of Food Engineering and Machinery
2 Academic Club of Computer-Aided Process Design in Food Engineering
University of Life Sciences in Lublin, Poland

Received 4 December 2013; accepted 1 April 2014; available on line 2 April 2014

Key words: beetroot juice, rheological properties, viscosity.

Abstract

The rheological behaviour of beetroot juice as a function of soluble solid content (from 10°Bx to 50°Bx) at a wide range of temperatures (from 10°C to 60°C) was studied. The measurements were made using rotational rheometer (Brookfield Engineering Laboratories: model LVDV-II + PRO). The investigation showed that the beetroot juice was Newtonian in behaviour and the viscosity was changed from 0.77 mPa s to 28.4 mPa s. The Arrhenius-Guzman equation was used to calculate the values of flow activation energy. In order to evaluate the influence of soluble solid content two models were applied: the power law and exponential equation. A new equation was proposed to express the combined effect of temperature and concentration on beetroot juice viscosity.

Introduction

Beetroot juice is one of the richest sources of antioxidants (WOOTTON-BEARD et. al. 2011) and naturally occurring nitrates. It also contains many other promoting compounds such as magnesium, potassium, iron, zinc, calcium, phosphorus, sodium, niacin, biotin, soluble fibre and vitamins A, B and C (WOOTTON-BEARD, RYAN 2011). Additionally beetroot juice provides a number of polyphenolic compounds (KAUR, KAPOOR 2002) as well pigments such as carotenoids (DIAS et al. 2009) and betalains (PITALUA et al. 2010).

* Correspondence: Zbigniew Kobus, Katedra Inżynierii i Maszyn Spożywczych, Uniwersytet Przyrodniczy w Lublinie, ul. Doświadczalna 44, 20-236 Lublin, phone: 48 81 461 00 61 int. 147, e-mail: zbigniew.kobus@up.lublin.pl
Therefore, drinking beetroot juice could help to protect against heart disease and certain types of cancer, particularly lung and skin cancer (KAPADIA et al. 1996).

Processing beetroots needs knowledge of rheological properties. The rheological properties of juices is an important property, which has several application in developing food process, processing equipment, quality evaluation and structural understanding of food and raw material (MANJUNATHA, RAJU 2013). They are required to determine the power requirements for unit operation such as: pumping, sizing of pipes, pasteurization, filling, mixing, evaporation etc. They are also important in the calculation of heat, mass and momentum transfer phenomena (TELIS-ROMERO et al. 1999). Vegetable and fruit juice were subjected to different temperatures and concentration levels during processing, storage and transportation, where the rheological properties can be changed dramatically. Typical properties of the data for beetroot juice are rather limited. The aim of the paper was to study rheological behavior of beetroot juice as a function of temperature and solid concentration.

Material and methods

A sample of commercial beetroot juice was purchased from local market. The raw juice with approximately 10°Bx was concentrated to different concentration levels at 20, 30, 40 and 50°Bx by vacuum evaporation technique using laboratory rotary vacuum evaporator (Model; Buchi Rotavapor R-205) at 60°C with reduced pressure. The rotational speed of a flask was fixed at 60 rpm. The content of extract in juice was determined with the help of the refractometer Atago model Pal-1.

Rheological properties were measured using Brookfield viscometer (Brookfield Engineering Laboratories: model LVDV-II + PRO). A 500 ml sample of beetroot juice was used in a glass baker for all experiments. The temperature of sample was changed from 10 to 60°C and kept at constant value using water bath (Brookfield TC-502P). The flow curves at different temperatures were obtained in the range of shear rate of 12-130 s⁻¹ using specific spindle S-61. The computer software (Rheolac 3.1) was applied to control viscometer and data acquisition. All experiments were carried out in three replications.
Results

The experimental flow curves obtained for the concentrated beetroot juice at different temperatures were shown in Figures 1–5. The rheograms of beetroot juice showed that there was linear increase in shear stress with respect to increase in shear rate. These results indicate the Newtonian behavior of concentrated beetroot juice.

Fig. 1. Flow curves of concentrated beetroot juice (10°Bx) at different temperatures

Fig. 2. Flow curves of concentrated beetroot juice (20°Bx) at different temperatures
Fig. 3. Flow curves of concentrated beetroot juice (30°Bx) at different temperatures

Fig. 4. Flow curves of concentrated beetroot juice (40°Bx) at different temperatures

Fig. 5. Flow curves of concentrated beetroot juice (50°Bx) at different temperatures
Figure 6 shows the influence of temperature and soluble solid content on viscosity of beetroot juice.

Both the temperature and the soluble solid content had a significant effect on the viscosity of beetroot juice. The increase in temperature of fluid leads to increase in mobility of the molecules and increase in intermolecular spacing, which decreases the flow resistance. The viscosity of beetroot juice decreased markedly with increase in temperature. The variation in viscosity of beetroot juice with temperature was significantly high at a higher soluble solid content. The concentration of the soluble solids had a strong effect on viscosity of the Newtonian liquids. The increase in soluble solid content leads to change in degree of hydration of solute molecules, increase in hydrogen bonding with hydroxyl groups of solute and decrease in intermolecular spacing, which increases the flow resistance. The viscosity of beetroot juice increased rapidly with increase in soluble solid content.

The variation of viscosity with soluble solid content at particular temperature could be described by an exponential equation (IBARZ et al. 2009, PERÓŃ et al. 2010):

\[\eta = \eta_1 \exp(bC) \]

where:
\(\eta \) – is the viscosity \([\text{Pa} \cdot \text{s}]\),
\(\eta_1 \) – is the viscosity when the soluble solids content is 0\(^\circ\)Brix \([\text{Pa} \cdot \text{s}]\),
\(b \) – is a constant \([\text{\circ Brix}^{-1}]\),
\(C \) – is the concentration \([\text{\circ Brix}]\).

Table 1 shows the values of the parameters, the determination coefficients and RMS for each temperature tested.
Table 1

<table>
<thead>
<tr>
<th>Temperature</th>
<th>η_1</th>
<th>b</th>
<th>R^2</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.849</td>
<td>0.068</td>
<td>0.98</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>0.745</td>
<td>0.062</td>
<td>0.98</td>
<td>0.11</td>
</tr>
<tr>
<td>30</td>
<td>0.625</td>
<td>0.057</td>
<td>0.97</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>0.566</td>
<td>0.054</td>
<td>0.97</td>
<td>0.13</td>
</tr>
<tr>
<td>50</td>
<td>0.504</td>
<td>0.051</td>
<td>0.98</td>
<td>0.11</td>
</tr>
<tr>
<td>60</td>
<td>0.448</td>
<td>0.049</td>
<td>0.98</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The parameter b decreases with the increase of temperature. The increase of viscosity at high temperature is smaller with the rise of concentration. Similar trends have been observed in other studies (RAO et al. 1984, IBARZ et al. 1992, 1994).

From the engineering viewpoint, it is useful to obtain a single equation that describes the combined effect of temperature and soluble solids contents on the viscosity of the beetroot juice. The parameters η_1 and b in equation 2 and 3 are dependent on juice temperature. Figure 7 shows the influence of temperature on values of constant η_1 and b.

![Fig. 7. Influence of temperature on values of constant η_1 (a) and b (b)](image)

The relationship between temperature and constants η_1 and b could be written by linear equations:

$$\eta_1 = k_1 t + k_2 \quad (2)$$

and

$$b = k_3 t + k_4 \quad (3)$$
where:
\(k_1 \) – constant \([^\circ\text{C}}^{-1} \cdot \text{Pa} \cdot \text{s}]\),
\(k_2 \) – constant \([\text{Pa} \cdot \text{s}]\),
\(k_3 \) – constant \([^\circ\text{C}}^{-1} \cdot ^{\circ}\text{Bx}^{-1}]\),
\(k_4 \) – constant \([^{\circ}\text{Bx}^{-1}]\),
\(t \) – temperature \([^\circ\text{C}]\).

The final equation which represents combined effect of temperature and total soluble solid content on viscosity beetroot juice was given by:

\[
\eta = (k_1 t + k_2)\exp[C(k_3 t + k_4)]
\] (4)

The parameters of the equation 4, the determination coefficient and RMS were reported in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Equation</th>
<th>(R^2)</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta = (-0.008t + 0.915)\exp[C(-0.0005t + 0.0745)])</td>
<td>0.99</td>
<td>0.16</td>
</tr>
</tbody>
</table>

The values of flow activation energy were calculated using Arrhenius-Guzman equation:

\[
\eta = A_0 \exp\left(\frac{E_a}{RT}\right)
\] (5)

where:
\(\eta \) – viscosity \([\text{Pa} \cdot \text{s}]\),
\(A_0 \) – material constant/pre-exponential coefficient/frequency factor \([\text{Pa} \cdot \text{s}]\),
\(E_a \) – flow activation energy \([\text{kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}]\),
\(R \) – gas constant \([\text{kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}]\),
\(T \) – temperature \([\text{K}]\).

Table 3 shows the values of the material constant and the flow activation energy for different soluble solid content.
The Arrhenius equation parameters of beetroot juice

<table>
<thead>
<tr>
<th>Soluble solid content [°Bx]</th>
<th>Material constant [mPa · s]</th>
<th>Flow activation energy [kJ · mol⁻¹ K⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0043</td>
<td>14.2</td>
</tr>
<tr>
<td>20</td>
<td>0.0063</td>
<td>14.6</td>
</tr>
<tr>
<td>30</td>
<td>0.0028</td>
<td>17.6</td>
</tr>
<tr>
<td>40</td>
<td>0.0023</td>
<td>20.2</td>
</tr>
<tr>
<td>50</td>
<td>0.0004</td>
<td>26.2</td>
</tr>
</tbody>
</table>

The flow activation energy is defined as minimum energy required which overcomes the energy barrier before the elementary flow can occur. The higher activation energy the greater influence of temperature on the viscosity.

The activation energy of beetroot juice rises with increase in soluble solid content. The values of flow activation energy of beetroot juice changed from 14.2 kJ · mol⁻¹ K⁻¹ for solid concentration of 10°Bx to 26.2 kJ · mol⁻¹ K⁻¹ for solid concentration of 50°Bx. A comparison of the results with literature data indicates that they were in conforming to values reported for other juice exhibiting Newtonian behavior (Juszczak, Fortuna 2004, Ibarz et al. 2009).

The variation of activation energy with solid soluble content could by described by two different models: the power law and exponential equation:

\[
E_2 = a_1 C^{b_1} \tag{6}
\]

\[
E_a = a_2 \exp(b_2C) \tag{7}
\]

where:

- \(C \) – total soluble solid content [°Bx],
- \(a_1 \) – empirical constant [kJ · mol⁻¹ · K⁻¹ · °Bx⁻¹],
- \(a_2 \) – empirical constants [kJ · mol⁻¹ · K⁻¹],
- \(b_1 \) – empirical constant [–],
- \(b_2 \) – empirical constant [°Bx⁻¹].

The models were used to fit the values of flow activation energy with soluble solid content. The magnitudes of the parameters and determination coefficient and RMS were reported in Table 4. The results indicated that exponential model was more effective to describe the influence of total soluble solid content on flow activation energy of beetroot juice.
The power law and exponential equation describing the dependency of flow energy activation against the content of soluble solids

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>R^2</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power law</td>
<td>$E_a = 4.44C^{0.429}$</td>
<td>0.82</td>
<td>0.11</td>
</tr>
<tr>
<td>Exponential</td>
<td>equation $E_a = 10.88\exp(0.0168C)$</td>
<td>0.95</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Conclusions

The rheological behaviour of beetroot juice was studied as a function of soluble solid content (from 10°Bx to 50°Bx) and temperature (from 10°C to 60°C). The results indicated that beetroot juice exhibits Newtonian behavior. The value of viscosity was strongly influenced by temperature and concentration of juice and changed in the range from 0.77 mPa · s to 28.4 mPa · s. The Arrhenius-Guzman equation was used to calculate the values of flow activation energy which ranged from 14.2 kJ · mol⁻¹ K⁻¹ for solid concentration at 10°Bx to 26.2 kJ · mol⁻¹ K⁻¹ for solid concentration at 50°Bx. The effect of soluble solids content on flow activation energy was described by exponential equation and the power law, but a better fit was obtained for the exponential function. A new equation was proposed to express the combined effect of temperature and concentration on viscosity beetroot juice.

References

