
TECHNICAL SCIENCES
Abbrev.: Techn. Sc., No 12, Y 2009

DOI 10.2478/v10022-009-0023-6

NUMERICAL AND EXPERIMENTAL ANALYSES
OF HOPF BIFURCATIONS

IN A LOCALLY EXPANDED CHANNEL

Wojciech Sobieski
Chair of Mechanics and Machine Design

University of Warmia and Mazury in Olsztyn

K e y w o r d s: Hopf bifurcations, CFD.

A b s t r a c t

This article discusses Hopf bifurcations in fluid flow through a locally expanded channel. The
first part presents the simulation model and computation results that investigate the possibility of
oscillatory bifurcations in the analyzed system at given geometry configurations and parameters.
Simulations were performed with the application of the Finite Volume Procedure in the Multi Flower
2D non-commercial package. The second part attempts to supplement simulation results with the use
of FLUENT and FlowWorks commercial applications. The last part of the paper describes a labora-
tory experiment validating the results of numerical computations at the qualitative and, partly, the
quantitative level. The described experiments investigate the usefulness of CFD applications and
simulation techniques in predicting and analyzing bifurcations under real flow conditions.
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A b s t r a k t

Artykuł zawiera rozważania dotyczące występowania bifurkacji Hopfa w przepływie płynu przez
kanał z lokalnym, występującym tylko na pewnym odcinku, rozszerzeniem. W pierwszej części
przedstawiono model symulacyjny oraz wyniki obliczeń, wskazujące na możliwość występowania
w rozważanym układzie bifurkacji oscylacyjnych przy pewnych konfiguracjach geometrii i par-
ametrów. Symulacje wykonano za pomocą niekomercyjnego pakietu Multi Flower 2D, opartego na
metodzie objętości skończonych. W części drugiej podjęto próbę uzupełnienia wyników symulacji
z zastosowaniem komercyjnych pakietów FLUENT oraz FlowWorks. Ostatnia część artykułu przed-



stawia oryginalny eksperyment laboratoryjny, potwierdzający na poziomie jakościowym i częściowo
ilościowym wyniki obliczeń numerycznych. Opisane w pracy badania przedstawiają możliwości
wykorzystywania aplikacji CFD i technik symulacyjnych do przewidywania bądź analizowania
zjawisk bifurkacyjnych w rzeczywistych układach przepływowych.

Introduction

Nonlinear differential equations can be used to describe various physical
phenomena in nature. The equilibrium stability of nonlinear systems has
a local character in reference to initial conditions as well as disturbances. The
above implies that the effect is not proportional to the parameter describing
the cause. Even minor changes in the initial conditions of a system may
produce large variations in the long-term behavior of the system. This phe-
nomenon has been referred to as the “butterfly effect” following the publica-
tion of Edward Lorentz’s article entitled “Can the flap of butterfly’s wing stir
up a tornado in Texas?”. Research efforts are made to investigate whether the
processes observed in various systems (physical, chemical, biological, econ-
omic, demographic, etc.) are steady, i.e. minimally sensitive to perturbations,
and predictable. Due to unpredictable events, a system’s equilibrium may be
altered to reach an unacceptable or even an undesirable state. Many catas-
trophes occur when a system shifts from a static to a dynamic equilibrium,
such as buckling of rod structures, vibration of suspended bridges or the flatter
of airplane wings. Those changes and transitions are related to bifurcation.

In mathematical terms, bifurcation occurs when a minor change in par-
ameters causes the properties of a model to change (MARDSEN 1976, HARB

1996, BADUR, SOBIESKI 2001, LEINE 2006, RODRIGUES 2007). In practice, it
implies a splitting of the equilibrium solution branch when a given active
(bifurcation) parameter reaches its critical value. In mechanics, bifurcation is
defined as the emergence of new momentum, heat and mass transfer compo-
nents as external conditions change. Two principal bifurcation conditions have
been determined in both mechanical and thermal systems (BADUR, SOBIESKI

2001, SOBIESKI 2006):
– the existence of a dominant flow direction, i.e. a direction in which the

values of parameters such as velocity, displacement or temperature gradient
are much higher than in the remaining (perpendicular) directions,

– the existence of a “free area” perpendicular to the dominant direction,
i.e. the possibility of solution branching.

An example of bifurcation in fluid mechanics is thin, stationary fluid flow
through an expanded (locally or permanently) channel. The expansion creates
a “free area”, and the convective part of the momentum flux is responsible for
the loss of stability. The active parameter in this case is the Mach number or
the Reynolds number.
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Other types of bifurcation behavior are also encountered in flow systems,
including Taylor-Couette flow between two rotating cylinders (DOMAŃSKI

2006) or Rayleigh-Bènard cells in selected types of convective flow (Elmer
Tutorials 2007).

Two types of bifurcations are possible in the analyzed expanded (locally and
permanently) channel. The first type is divergent (stationary) bifurcation in
which the system initially undergoes a sudden change, after which it stabilizes
and takes up a new, stationary form. The second type is oscillatory bifurcation
where the permanent solution loses stability and is replaced by a periodic
solution that develops with an active parameter increase in the supercritical
area (KURNIK 1997, SOBIESKI 2006). In real physical systems, the above
corresponds to the loss of equilibrium point stability and the occurrence of
self-excited vibrations. Cases with periodic vibrations are referred to as Hopf
bifurcations.

There are very few published sources investigating flow structures in
locally expanded channels (expanded along a given section). One of the most
noteworthy examples is the work of MULLIN et al. (2003) which describes the
experiment and presents the results of numerical simulations. The authors of
the study identified two basic types of structures: symmetrical and asymmet-
rical, and concluded that the type of bifurcation is determined mostly by the
system’s geometry relations. Similar studies have been carried out in refer-
ence to permanently expanded channels (an expansion from a set point to the
end of the investigated flow area) (BATTAGLIA et al. 1997 MANICA BORTOLI DE

2003), but the conducted experiments were purely simulational. There are
several experimental studies investigating flows through permanently ex-
panded channels (ESCUDIER 2002, POOLE 2005, CHIANG et al. 2001), but they
make a partial reference to non-Newtonian fluids and flows at a low Reynolds
number.

The above cited studies have been carried out based on a classical
approach: an experiment is performed and further attempts are made to
repeat it virtually with the involvement of a simulation model. The author of
this study attempted to reverse this classical approach. The study began with
the development of a simulation model and the relevant assumptions. A test
stand was then set up based on the results of the simulation phase. This
approach naturally gave rise to two key experimental objectives. The first
goal was to model the previously investigated bifurcation phenomena ob-
served in locally expanded channels. The second objective was to determine to
what extent Hopf bifurcations can be predicted in a real system based on
a simulation model.
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Computer model

The geometry of the investigated flow structure is presented in Figure 1.
The system comprised a plain channel with a symmetrical, local expansion in
the center.

inlet outlet

m

H

Bb

Fig. 1. Flow system geometry

The basic model was defined and the following assumptions were made
prior to modeling:

– the experiment analyzes a single-component flow of a medium whose
properties resemble those of water (the liquid cannot be directly defined in the
applied computational program due to the need to account for the compressible
fluid equation),

– the Mach number should be less than 0.3 to maintain medium par-
ameters at the level of near real-event parameters (which follows directly from
the previous assumption),

– computation will take place in two-dimensional space (DYBAN 1971,
BADUR, SOBIESKI 2001, ŚWIĄTECKI 2004, CUDAKIEWICZ 2005, SOBIESKI 2006),

– the effect of turbulence and viscosity is considered to be negligibly small
(BADUR 1999, ŚWIĄTECKI 2004, CUDAKIEWICZ 2005, SOBIESKI 2006),

– outlet pressure is constant and equal to atmospheric pressure at 1013
[hPa],

– static input pressure is constant and equal to 1025 [hPa],
– inlet velocity is controlled by modifying total inlet pressure values,
– inlet and outlet width is identical and constant at 25 [mm],
– total channel length is constant at 280 mm [mm],
– total expansion length H is constant at 200 [mm],
– basic channel width in the expanded section is 50 [mm],
– the result is positive, i.e. a Hopf bifurcation occurs, when the flow is

asymmetrical and cyclical changes in flow type are observed. The result is
negative when the flux impinges on a side wall and becomes detached only at
the outlet.

Following system analyses and preliminary simulations, the following
numerical parameters were adopted in the study (PUCHALSKI 2008):
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– type of grid: structural, total number of cells: 48 000,
– convective flux reconstruction method: TVD (Total Variation Diminish-

ing),
– time-stepping scheme: implicit, with constant time step for all cells,
– CFL number (Courant-Friedrich-Levy condition): 10,
– minimum number of iterations: 20 000.
The flow simulation model was developed with the use of the Multi Flower

2D v. 3.0.6 non-commercial package (SOBIESKI 2006, SOBIESKI 2008). The
package combines applications for developing computer simulations in com-
pressible fluid mechanics and features the following options: modeling two-
dimensional flows with every type of geometry relations (internal and external),
modeling stationary and non-stationary flows, modeling subsonic, supersonic
and transonic flows, modeling multicomponent flows. The Multi Flower 2D
package relies on the Finite Volume Procedure (FV) and the Mixture Model. The
FV procedure supports multiple balancing of different values (mass, momen-
tum, energy, etc.) in every computational cell and at every time step.

The general system of balance equations found in the Multi Flower 2D
solver is as follows (BADUR, SOBIESKI 2001, SOBIESKI 2006):

– mass balance:
∂ ρ + ∇ (ρν→)= 0 (1)

∂ t
– momentum balance:

∂
(ρν→) + ∇ (ρν→ ⊗ ν→) = ∇ (– pI

↔
+ τ

↔
) + ρ s→b (2)

∂ t
– energy balance:

∂
(ρe) + ∇ (ρeν→) = ∇ ((– pI

↔
+ τ

↔
) ν→ + q→) + ρ se (3)

∂ t
– component balance:

∂
(ρYk) + ∇ (ρYkν

→) = ∇ (J
→
k ) + ρ sk (4)

∂ t

where: ρ – density of mixture [kg m-3], ν→ – average velocity of mixture [m s-1],
τ↔ – total stress tensor [Pa], s→b – source of mass forces [N m-3], e – total energy [J],
p – pressure of mixture [Pa], I

↔
– unit tensor [-], q→ – total heat flux [J/(m2s-1)],

se – source of energy [J/(m3s-1)], Yk – mass share of the kth component [-],
J
→
k – total diffusion flux [mol/(m2s-1)], sk – mass source [kg/m3s-1], ns – number of

mixture components. The subscript in the equation (4) may be from 1 to ns.

Equations (1)–(4) present the Mixture Model (or the Homogenous Model)
for describing homogenous mixes of any number of different phases: gases,
fluids and solids. In this model, all phases are regarded as a mixture and have
a single balance equation system. The mixture is described with the use of
Euler approach (SOBIESKI 2008). The discussed simulations did not require the
use of the multicomponent flow modeling option.

The Multi Flower 2D package solver does not contain all elements featured
in equations (1)–(4). It does not list stress tensors or source terms. Despite
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those simplifications (and taking into account the previous assumptions), the
Multi Flower 2D package seems to be an appropriate tool for the needs of this
study. Its usefulness has been validated in an earlier study on the modeling of
bifurcations in a closed-off plain channel based on a previous experiment
carried out by DYBAN (1971) and described by BADUR and SOBIESKI (2001).
A high level of qualitative consistence and a satisfactory level of quantitative
consistence were reported in that study. The suitability of the Multi Flower 2D
package for modeling non-stationary processes with bifurcations has also been
confirmed by other authors (ŚWIĄTECKI 2004, CUDAKIEWICZ 2005, PUCHALSKI

2008).

Simulation results

The first phase of the numerical simulation process involved the determi-
nation of an area with Hopf bifurcations. Such bifurcations were observed in
geometry relations later referred to as the basic model at a total pressure of
105 000 [Pa] (Fig. 2). The maximum computational velocity was 3.85 [m s-1],
and the value of the Mach number was below the set limit of 0.3. The first
phase ended with the determination of the parameter range for further
computations, i.e. channel width B of 40 to 60 [mm], at intervals of 5 [mm], and
a total input pressure of 103 000 to 107 000 [Pa], at intervals of 250 [Pa].

3.85
3.66

V [m/s]

3.46
3.27
3.08
2.89
2.69
2.50
2.31
2.12
1.92
1.73
1.54
1.35
1.15
0.96
0.77
0.58
0.39
0.19

Fig. 2. Basic flow with Hopf bifurcations – total velocity distribution

The second simulation series began with channel width B = 50 [mm] to
identify the range at which bifurcations occur. A positive result was reported in
a pressure range of 104 500 to 105 000 [Pa]. Width B was changed to 45 [mm]
and subsequent efforts were made to determine the range at which Hopf
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bifurcations appear. This procedure was repeated for all of the set channel
widths. In the case with the lowest analyzed width, a positive result was noted
within the range of 104 000 to 120 000 [Pa], but some of the results were
disregarded in view of the assumed Mach number; therefore, the maximum
total pressure was deemed as correct at 10 600 [Pa].

The Mach number minimally exceeded the threshold value at channel
width B = 45 [mm] and a pressure of 104 250 and 104 500 [Pa]. Those results
were not rejected, but were regarded as less reliable. A positive result was not
reported for width B = 60 [mm] at any range of input pressure values.

At channel width B = 55 [mm] and a pressure of around 103 000 [Pa],
a new type of flow was observed, but it was not classified as bifurcation and
was subsequently disregarded. The results of this experimental phase are
presented in Table 1. Basic model results are highlighted with a different
background color.

Table 1
Hopf bifurcation areas

Total pressure [hPa]

103 103.25 103.5 103.75 104 104.25 104.5 104.75 105 105.25 105.5 105.75 106
B

[mm]

40 X V V V V

45 X V V V V V V X

50 X X X V X V X X

55 X X X X X X X X X

60 X X

The objective of the next stage of the study was to verify whether the
observed bifurcations were Hopf bifurcations. For this purpose, total pressure
values at a characteristic flow point were registered during the computational
process. The selected point was situated minimally outside the flow axis at an
adequate distance from the beginning of the expansion (at around 1/4 length of
the entire expanded section). Calculations were repeated for B = 50 [mm] and
a total inlet pressure of 105 000 [Pa] because oscillating flow characteristics
were clearly manifested in the investigated case. The pressure change diagram
is shown in Figure 3. The regularity of pressure changes after the equations
have been expanded proves that the observed process is a case of oscillatory
bifurcations.

Flow periodicity is also manifested in the convergence diagram (Fig. 4). The
system solution follows the pattern of a periodically changing flow throughout
the computation process, but it never reaches a stationary state. It should be
noted that the frequency of the residue cycle is twice higher than the frequency
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of pressure changes. The above indicates that the computational process
expands in the same way after every “reversal” of the flow structure (which
takes place twice in each bifurcation cycle).
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Fig. 3. Diagram of changes in total pressure in a selected cell
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Fig. 4. Convergence process for the basic model

Simulations of prebifurcation flow

Attempts were made to replicate the above results with the use of different
software. Simulation models were developed in the FLUENT (based on the
Finite Volume Procedure) and the FlowWorks (based on the Finite Elements
Procedure) commercial packages. A 3D model was applied in both cases to
verify the effect of the number of parameters on computation results. Two
computational grids (30 200 and 244 000 cells) and several initial conditions
were analyzed in the FLUENT package. Only the basic model with around 25
000 grid cells was analyzed in the FlowWorks package. It should be noted that
the authors were unable to precisely replicate the model generated in the Multi
Flower 2D package in either of the commercial programs. The reported
deviations concerned the definition of the working medium. An incompressible
medium was applied in FLUENT and FlowWorks packages, while the Multi
Flower 2D relied on a compressible medium described by the ideal gas law.
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In general, it was found that the computational algorithms in the FLUENT
and FlowWorks packages, which are highly complex and guarantee computa-
tional stability for a very broad range of values, suppress bifurcation and
produce results that are completely inconsistent with expectations. The results
of the basic model simulation, achieved with the use of the above commercial
packages, are presented in Figures 5 and 6. Special attention should be paid to
the range of total velocity values which are similar in Multi Flower 2D and
FlowWorks packages, but are significantly different in the FLUENT applica-
tion. The causes of the above were not identified.
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Fig. 5. Distribution of total velocity and static pressure produced in the FLUENT package for the
basic model
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Fig. 6. Distribution of static pressure, total velocity and stream line course observed in the
FlowWorks package for the basic model

Laboratory experiment

Since previous experiments were highly general in nature and were carried
out at the qualitative level, the author of this study set out to investigate
whether simulation results could be applied to predict bifurcations in real
systems. A test stand was set up to determine the above. The author assumed
that the key factor determining bifurcations was the geometry of the flow
system, namely the b/B width ratio. Secondary importance was attached to the
type of medium and its parameters.

The set-up of the test stand is presented in Figure 7. The main part
comprises two plexiglass panels enclosing partially mobile metal walls. Chan-
nel dimensions conform to the dimensions of the previously described basic
model. Channel width (in the third spatial dimension) was 20 [mm], and it was
deemed sufficient to minimize flow disturbances caused by the viscosity effect.
A greater width was not applied to ensure adequate flow intensity. The test
stand was supplied from the local water mains.
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Fig. 7. Laboratory test stand

Fig. 8. Flow visualization at an intensity level of 0.72 [l s-1]

Fig. 9. Flow visualization at an intensity level of 0.97 [l s-1]

The behavior of the water jet was observed upon reaching the expanded
channel section at different flow intensity values. A dye was initially introduc-
ed into the system together with the liquid for the purpose of visualization, but
it failed to achieve the set objective in turbulent flows. The dye became mixed
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with water too early, and it did not reflect the movement of the water jet. As
part of the second attempt to visualize the flow structure, a thin thread was
introduced into the system and attached symmetrically at the channel inlet.
The experiment was performed at four flow intensity levels Q = 0.08, 0.33,
0.72, 0.97 [l s-1] to produce the following average flow velocity values at the
inlet c = 0.16, 0.65, 1.44, 1.93 [m s-1]. In the first two instances, flow intensity
was too low and the thread rested loosely in the channel. At higher flow
intensity levels, the thread clearly oscillated and took up the anticipated
shape. The above is presented in Figures 8 and 9. Flow velocity was roughly
consistent with the values computed in the Multi Flower 2D simulation.
Higher intensity flows could not be investigated for technical reasons which
prevented the determination of the upper intensity limit at which oscillations
occur. It should also be noted that jet oscillations were clearly manifested in
the experiment, but the flow was not ideally symmetrically reversed in
relation to the axis. The above could be attributed to insufficient accuracy or
the manner of thread attachment: the thread had a greater tendency to
become reversed in a single direction. The needle placed inside the channel
was not ideally centered which also affected measurement precision. The
frequency of flow reversal could not be determined with a high degree of
accuracy, but according to estimates, it ranged from around 0.2 [Hz] to
around 1.5 [Hz]. The above observation is not consistent with the results of
the numerical simulation where the computational time per cycle was much
longer.

Conclusions

The conducted experiment enabled to formulate the following final con-
clusions:

– bifurcation flows (including Hopf bifurcations) can be predicted and
analyzed with the use of simulation techniques developed as part of Numerical
Fluid Mechanics. In view of scant publications addressing this problem, the
reported results render this experiment a success;

– the available numerical codes, FLUENT and FlowWorks, do not feature
solvents for analyzing bifurcation flows. The above could be due to the high
level of complexity of the applied computational algorithms which maximally
protect the computational process from the loss of stability. The solver of the
Multi Flower 2D package is less stable and less versatile, but it is incapable of
suppressing system disturbances with equal efficiency, thus supporting the
propagation of bifurcation phenomena. This theory has not been validated, but
it has been postulated by the author as a possible explanation;
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– the experiment validated the assumption that the b/B width ratio is the
key factor responsible for bifurcations in expanded channels. The fact that
bifurcations were produced in a real system designed solely in view of previous
numerical analyses is a success. Although it was impossible to precisely verify
each computational case, the validation of the basic model proved the efficiency
of simulation methods and could be a venture point for future research.
Follow-up experiments are needed to determine the range of values at which
Hopf bifurcations occur in a real system and to compare this range of values
with the results of simulations. A study to determine the effect of expansion
length H (or dimensionless quantity H/B) on the nature of non-stationary
phenomena would also greatly contribute to our understanding of the problem;

– the experiment confirmed the assumption that the type of medium plays
a secondary role in the bifurcation process. These findings are supported by
the experiment involving a completely different medium than that applied in
the simulations (due to the limitations of the simulation program) which
produced similar results;

– a satisfactory quantitative conformity of flow parameters was nor
achieved. In a real system, bifurcations were observed at a much higher inlet
pressure than in numerical simulations (where even minor pressure differen-
ces resulted in bifurcations). The above could be due to the specific nature of
the applied mathematical model, in particular the equation of state which is
more suitable for gas than liquid. This assumption is validated by velocity
values which, despite significant differences in inlet pressure, are similar.
Total velocity in basic model simulations ranged from 0.19 to 3.85 [m s-1]
regardless of the place in space (for the time horizon presented in Fig. 2). In
a real system, similar flow values were noted at average inlet velocity equal to
0.72 and 0.98 [m s-1]. The observed velocity values cannot be directly compared
due to the absence of data on minimum and maximum velocity in a real system
(whose determination requires the use of specialist measurements, such as the
PIV method) and changes in these values over time. It is possible that the
temporal moment presented in Figure 2 is not the best indicator of the velocity
field (minimum and maximum velocity values varied for different temporal
moments);

– the analysis of the effect of flow velocity, partially discussed in the
previous point, validates reference data according to which in addition to
geometry relations, velocity (the Reynolds number in the dimensionless form)
is the second most important factor (active parameter) affecting the occurrence
and character of bifurcations.
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