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1. Introduction  
 
The following values describe the properties of porous media: 
 

• volumetric porosity e  [m3/m3] which measures the fraction of the volume of voids in a 
porous medium  [9]: 
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where pV  is total void volume [m3], V is sample volume [m3], and gV  is boundary volume 

[m3]. Boundary volume has been introduced to ensure that the selected sample is 
sufficiently large and that porosity does not equal 0  or 1. Boundary volume has been 
selected correctly when its increase does not induce a significant increase in porosity. 
Effective porosity is also defined in some applications to account for the fact that free 
fluid flow is not possible in all void spaces.  

 

• average particle diameter aved  [m] (in beds composed of spherical or quasi-spherical 

particles). Average particle diameter represents a typical bed particle, and it is used in 
materials composed of particles with various diameters. For differently shaped particles, 
the average diameter is usually determined with the use of sphericity coefficient ϕ . 

Sphericity is always somewhat less than unity ( 1<ϕ ). 

 

• tortuosity τ  [m/m] – is the ratio of the actual path length pL  traveled by fluid through 

voids in a porous medium and section 0L  [m] of the measured path (Fig. 1), 

 

  
0L

Lp=τ .          (2) 

 
By definition, tortuosity is always higher than unity (but it can equal 1 in boundary cases). 

The space between spheres where pL  is calculated will be referred to as the "path". 

 

  
 

Figure 1. Visualization of tortuosity 
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2. Distribution of spherical particles in 3D space 
 
In porous beds composed of spherical particles, particles are generally distributed in a non-
uniform and a non-repeatable manner. This is because the position of every particle is 
determined by the local balance of forces: gravitational forces, force of reactions with other 
particles or container walls, and frictional forces. The only known information is that the first 
layer of particles will always come into direct contact with the bottom of the container. The fact 
whether all spheres have identical diameter is not relevant (although the problem is much more 
complex if spheres differ considerably in diameter).  
 

 
 

Figure 2. Theoretical distribution of spherical particles at the bottom of the container (top view). 

 
In theory, particles that come into contact with the bottom of the container can be arranged in 
two principal ways. The distribution presented in Figure 2a can take place if the container has a 
rectangular cross-section and if the difference between particle diameter (which is always 
identical) and the length of the container wall is not significant. This difference should have a 
defined value to ensure that the particles are densely packed and are unable to move freely under 
the influence of reaction forces. This type of particle arrangement is generated artificially, and it 
generally does not occur in real systems composed of thousands or millions of particles. The 
above is validated by a simple experiment presented in Figure 3 which demonstrates that a 
triangle is the smallest geometric structure in a layer of spheres that are freely arranged on a 
plane. The geometric centers of the adjacent figures are the vortices of the triangle. The fact 
whether individual spheres come into contact and whether they have identical diameters is not 
relevant. The only important information is that individual spheres are always separated by void 
spaces. 
 

 
 

Figure 3. Actual distribution of spherical particles at the bottom of the container. 
 

The arrangement of particles in successive layers poses another problem. Since the smallest 
geometric structure in a bed is a triangle (Fig. 4a), it can be assumed that the next sphere will be 
positioned directly above the triangle's center (Fig. 4c). If spheres have identical diameter and 
come into direct contact, their centers will form a tetrahedron in space. If the above conditions 
are not met, the spheres will form an irregular tetrahedron. Therefore, the tetrahedron is the basic 
arrangement pattern of particles with identical or similar diameter. A layered arrangement pattern 
(Fig. 4b) is improbable on a large scale, but it could be encountered locally in special cases.     
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Figure 4. Distribution of spherical particles in a bed 

 
3. Test bed 
 
Tortuosity can be calculated with geometric methods only if detailed information about the 
position of a particle's center and the diameter of every particle is available. In this study, 
tortuosity was calculated based on the results of a simulation performed in the PFC3D program. 
This commercial program has been developed based on the Discrete Element Method. PFC3D 
supports analyses of particle motion in a porous bed under exposure to various forces, such as 
vibration. The program calculates the forces between adjacent particles and between particles and 
walls in view of the force of gravity and other body forces, subject to context. The coordinates of 
every sphere are calculated in every new time step. The program also monitors the relations 
between object to determine which spheres remain in contact in a given moment.   
 

 
 

Figure 5. Visualization of the test bed 

 
The tested porous bed is presented in Figure 5. Points represent the geometric centers of 
spheres. The bed was composed of 18188 spheres with an average diameter of 6.5 [mm] in a 
range of 5.5 to 7.5 [mm]. The container had a circular cross-section with diameter D = 0.15 [m]. 
The container had a height of 0.28 [m], but it was filled only to a height of 0.25 [m]. Detailed 
information about the discussed model and its validation was presented by [3,4]. The data 
generated by PFC3D included the numbers of all spheres and the coordinates of sphere centers.  
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4. Tortuosity calculation algorithm 
 
The process of calculating tortuosity begins with the selection of a point, referred to as the 
"preliminary starting point", from which the path length will be determined. This point can be 
positioned arbitrarily, but it should not be positioned too close to the vertical wall of the 
container. In this study, the preliminary starting point was generally the point that was positioned 
centrally at the bottom of the container, an any exceptions to the above rule were implicitly 
stated. In Figure 6, the preliminary starting point was marked with coordinates (x0, y0, z0). 
 

 
 

Figure 6. Method of calculating path length. 

 
The preliminary starting point was calculated according to the below formula: 
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where: minx , maxx , … - minimum and maximum values of the coordinate in each direction [m], 

aved  - average diameter of all spheres in the bed [m]. In the next step, the numbers of the spheres 

forming the nearest triangle were determined. Sphere numbers ranged from 1 to 18188. The 
above numbers were used to determine vortex coordinates (numbered 1 to 3 in every run of the 
calculation loop) and the coordinates denoting the center of the triangle:  
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The triangle center with coordinates (xc, yc, zc) is the second point of the path. The first path 
point has coordinates (xc, yc, z0). This modification was applied to position the first section of the 
path perpendicularly to the bottom of the container and to prevent an unnecessary increase in 
path length. The last section of the path was modified accordingly. Point (xc, yc, z0) was referred 
to as the "final starting point". 
 
The method of calculating z0 coordinate should be discussed in greater detail. As mentioned 
earlier, the data generated by PFC3D contained only sphere numbers and the coordinates of 
sphere centers. Initially, all spheres were sorted by height to determine the coordinate at the 
bottom of the container and the arbitrary coordinate on the top layer of the bed. It should be 
noted that the relations between sphere coordinates and sphere numbers generated by PFC3D 
were not modified. After this operation, the sphere with the smallest value of Z-coordinate 

( 1min zz = ) was the first sphere to be saved in computer memory. By the same token, the topmost 

sphere (
snzz =max ) was saved last. The value of 0z  coordinate was determined by subtracting the 

average sphere diameter (refer to formula 3) from the Z-coordinate of the first sphere. The same 

data were used to determine the length of path 0L  [m] where tortuosity is calculated: 

 

 aven dzzL
s

+−= 10 ,         (5) 

 

where: 
snz  - Z-coordinate of the topmost sphere in the bed [m], 1z  - Z-coordinate of the 

bottommost sphere in the bed [m], sn  - number of spheres in the bed [-]. 

 

 
 

Figure 7. Methods of calculating the search point  

 
The statement that a tetrahedron is the basic pattern of sphere arrangement was used in 
subsequent steps of the calculation process. Based on a triangle with vortex coordinates (x1, y1, 
z1), (x2, y2, z2) and (x3, y3, z3), attempts were made to find a fourth sphere, where the resulting 
figure would most closely resemble a tetrahedron. The search for the fourth vortex began by 
estimating the position of the next sphere, and this position was referred to as the "search point" 
with coordinates (xf, yf, zf). The coordinates of the actual sphere(x4, y4, z4) positioned most closely 
to the search point were then determined. The method of determining search point coordinates 
proved to be highly significant for the discussed problem. Three such methods were developed: 
 
The first method (Fig. 7a), referred to as the triangle center method (TCM), involves the 
calculation of the coordinates of the point positioned exactly above the center of the current 
triangle at a distance of: 
 

3
2

0 ⋅⋅= hChh ,         (6) 
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where: h  - height of the tetrahedron [m], 0h - specific height [m], hC  - correction factor [-] 

( 10 << hC ). Specific height 0h  can be the average side length of the current triangle avel  [m] or 

the average sphere diameter aved  [m]. The average diameter of spheres forming a given triangle 

can be potentially used. If 1=hC , then h  corresponds to the height of a tetrahedron with side 

length 0h . 

 
Therefore, the search point is calculated with the use of the following formula: 
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In the first method, the path reaches the top layer of the bed in a rapid and "vertical" manner. 
This problem will be discussed in successive parts of the article. In this approach, path length is 
relatively small. 
 
In the second method (Fig. 7b), referred to as the triangle normal method (TNM), the search 
point is positioned on the triangle normal at distance h . The cross product of vectors w

r
 and u

r
, 

obtained by subtracting the corresponding coordinates of two triangle points, was applied:  
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The direction cosines of the normal vector were calculated from the following dependencies: 
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The resulting vector was normalized: 
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where 
 

 222 γβαδ ++= .         (11) 

 
The final formula for calculating the coordinates of the search point is: 
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where γC  is a dimensionless coordinate which shifts the triangle normal in the positive direction 

of the Z-axis. This default value of γC  is 1. The coordinate has been applied to perform 

additional tests which will be described in successive parts of the article. Similarly to the first 

method, hC  was used to correct the distance between the point and the plane of the triangle.  

 
The direction of the triangle normal is determined by the sequence in which the points forming 
vectors w

r
 and u

r 1 are defined. The aim of the simulation was to find a path from the bottom of 
the container to the top layer of the bed; therefore, triangle normals with a direction opposite to 
the Z-axis cannot be taken into consideration (the path would return towards the bottom of the 
container). For this reason, we have to determine which of the two points is positioned higher: 
the center of the triangle or the search point. If the search point is positioned below the center of 
the current triangle, we have to return to formula (8) and reverse point numbers in one of the 
vectors. The remaining calculations should then be repeated.  
 
The third method (Fig. 7c), referred to as the ideal tetrahedron method (ITM), postulates the 

existence of a local tetrahedron where all sides are equal and have length 0h . The coordinates of 

the tetrahedron's vortices are described by the following formulas: 
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The above system of nonlinear equations was solved with two numerical methods. The first 
method relies on the secant method, whereas the second method is based on a known value of 
the Z-coordinate, which considerably simplifies the system. However, neither of the algorithms 
was successfully implemented, and the search point was calculated erroneously in both cases. The 
triangle normal method proved to be a highly satisfactory approach; therefore, the above 
algorithms were not corrected, and ITM (and TCM) was ultimately rejected.   
 
The number of the closest sphere is determined based on the coordinates of the search point. 
This part of the algorithm had to be defined for every special flag cell, i.e. a logical variable 
indicating whether a given sphere had been previously used to generate a triangle. The relevant 
information is required to prevent the program from classifying one of the spheres forming the 
current triangle as the closest sphere. If the above information were not available, the 3D figure 
would not be generated and the algorithm would not be continued. Every time a sphere is used in 
the algorithm, its flag is modified, and that sphere cannot be used again. 
 

                                                 
1 I would like to thank Anna Trykozko of the University of Warsaw for her valuable input to solving the problem. 
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The calculated coordinates of tetrahedron vertices form three new triangles (1, 2, 3), (2, 3, 4) and 
(3, 1, 4). The triangle to be intersected by the path has to be selected. Initially, attempts were 
made to develop a method for selecting a triangle based on criteria such as the largest area, 
triangle center with the topmost position, triangle center positioned closest to the vertical line 
from the final starting point, and other criteria. However, numerous implementations and tests 
revealed that one of the triangle's vertices is always copied beginning from the first iteration. In 
other words, every successive triangle contained the same sphere despite the fact that the 
remaining spheres were changed. The above led to the rapid degradation of the algorithm and an 
infinite loop that did not produce a sensible solution. As a result, the calculation process was 
often disrupted. An example of the above is presented in Figure 8 where the selection criterion 
was the largest triangle area. The path was very long and convoluted (left) and triangle area 
increased gradually (right).  
 

 
 

Figure 8. Examples of algorithm degradation 

 
Algorithm degradation can be explained based on Figure 9. In this case, triangle II(124) has the 
largest area in the first iteration because one of its sides stretches between the bottommost sphere 
(1) and the topmost sphere (4). The next sphere will be positioned above the remaining spheres 
(due to TCM, TNM and ITM rules); therefore, triangle III(145) generated in the next iteration 
will have an even longer side (15). The resulting triangle will also have the largest area, and the 
next triangle will also use sphere number 1. 
 

 
 

Figure 9. Visualization of the mechanism behind algorithm degradation  

 
In view of the above, the bottommost sphere was ultimately rejected in every iteration. The three 
remaining spheres were used to generate a new triangle, and the search process was repeated until 
the achievement of a point where the distance between the search point and the top layer of the 
bed was smaller than the distance between that point and the nearest "free" sphere. If the above 
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condition was met, the loop was terminated, and the last point on the top layer of the bed, 
positioned directly above the center of the last triangle, was added to the path. The results of the 
calculations for the first two methods are presented in Figure 10. 
 

 
 

Figure 10. Visualization of results:  
red: TCM, h0 = lave; green: TNM, h0 = lave; 

blue: TCM, h0 = dave; brown: TNM, h0 = dave; 

 
5. Implementation 
 
The discussed algorithm was used to develop a computer program. The computation module was 
written in Fortran 90, and the code was compiled with gfortran. The computational area in every 
iteration was visualized with the Gnuplot interpreter based on the scripts generated automatically 
by the program. An example of data visualization is presented in Figure 11 which shows the 

results of the calculations performed in the first iteration for TNM, avelh =0  and correction 

factors equal to 1. The visualization includes the local fragment of space with the current triangle 
(green), the triangle center (red point which is also the second point on the path), the search 
point (filled green point) and the tetrahedral fourth comer (large blue point). The visualization 
presents the beginning of the calculation process, and starting points are also shown. The plot 
generated by Gnuplot can be rotated and enlarged, and the calculation process can be continued 
by pressing a key in a separate message window. The three successive steps of the same 
computational cycle are presented in Figures 12-14. The actual spheres are positioned very closely 
to the search point.  
 
It should also be noted that the plots generated by Gnuplot are not set to scale, which is why 
they appear skewed, and the actual distances and angles can be significantly distorted. The above 
posed a challenge, and an alternative approach had to be used to test the quality of calculations 
and visualizations. Tetrahedron plots generated by Gnuplot and Gambit are presented in Figure 
152. 
 
The visualization mode (plots are/are not displayed for every iteration) is selected indirectly in 
the program. Regardless of the selected mode, the final path diagram with the surrounding 
spheres is displayed at the end of the calculation process. The final path for the discussed 
example is presented in Figure 16. The plot can be rotated and/or enlarged to analyze the path 
geometry in greater detail, as shown in Figure 17. 

                                                 
2 Data were visualized in Gambit by Anna Trykozko of the University of Warsaw. 
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Figure 11. Visualization of the calculations in TNM for h0 = lave – iteration 1 

 

 
 

Figure 12. Visualization of the calculations in TNM for h0 = lave – iteration 2 

 
Important information is displayed in the program window (Fig. 18). At the beginning, the 
program displays the name of the task and the number of spheres in the bed. During iterations, 
the number of the iteration and the numbers of the spheres forming the processed tetrahedron 
are displayed. At the end of the calculation process, the program generates the final report with 

information about the number of path points, bed height ( 0L  [m]), path length ( pL  [m]), 

tortuosity (τ [-]), bulk volume, internal area of the solid body, specific area of the porous body, 
volume of the porous body and porosity ( e [-]). The configuration of computational methods and 
the values of the applied correction factors are also displayed. The last part of the final report 

presents the values of the terms of the Ergun equation ( AE – linear term, BE  – nonlinear term) 

and the Kozeny-Carman equation ( KC ). The value of the constant was not taken into account in 
the Kozeny-Carman equation. 
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Figure 13. Visualization of the calculations in TNM for h0 = lave – iteration 3 

 

 
 

Figure 14. Visualization of the calculations in TNM for h0 = lave – iteration 4 

 
 

 
 

Figure 15. Visualizations of the same tetrahedron:  
Gnuplot (left) and Gambit (right) 
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Figure 16. Visualization of the path calculated in TNM at h0 = lave  

 

 
 

Figure 17. Visualization of the path calculated in TNM at h0 = lave – enlargement 

 

 
 

Figure 18. Program window – final report in TNM for h0 = lave 
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The visualization of all spheres in the test bed was relatively slow in Gnuplot; therefore, an 
additional graphic postprocessor was developed in Borland Delphi 7 with the OpenGL graphic 
library. The bed and the paths (up to 12) are rapidly displayed in the program. The program 
window is presented in Figure 18. 
 
6. Indicators of triangle geometry 
 
The quality of the calculated path had to be analyzed in the process of developing the program. 
Triangle area and perimeter proved to be highly useful indicators. The indicator of triangle area 

AI  was defined as the ratio of the area of the current triangle iA  [m2] to the area of an equilateral 

triangle 0A  [m2]  formed by three adjacent spheres with diameter aved : 
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Formula (16) is Heron's formula where L  is the perimeter of a triangle, and a , b  and c  denote 
the lengths of triangle sides. All of the analyzed parameters were determined with the use of the 
formula for calculating the distance between two points in space:  
 

 ( ) ( ) ( )
jijijiij zzyyxxl −+−+−= .       (17) 

 

This approach was also used to calculate the perimeter indicator LI : 

 

 
0L

L
I i

L = ,          (18) 

 

where: iL  - perimeter of the current triangle [m], perimeter of an equilateral triangle formed by 

three adjacent spheres with diameter aved . 

 
The last parameter, which can be helpful for analyzing solutions in the TNM model, was the 
angle between the normal of the current triangle and the Z-axis (Fig. 19). The angle was 
calculated with the below formula: 
 

 ( )γγ arccos=I ,         (19) 

 
and it was converted to degrees. 
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Figure 19. Exemplary distribution of γI  in TNM for h0 = lave 

 

During the calculations performed for TNM and avelh =0 , the algorithm was disrupted by an 

anomaly which occurred at roughly 32  of bed height. This problem was discussed in greater 

detail in section 13. Beginning from this point, the area of every successive triangle increased (Fig. 
20). Such a significant increase (up to several dozen times) in triangle area was not acceptable; 
therefore, an additional procedure was introduced to correct the points of the current triangle 

when its area exceeded the critical value crA . The critical value was achieved when the area of an 

ideal (equilateral) triangle was enlarged to an extent which enabled the next sphere with diameter 

aved  to be positioned in its center. This problem is presented in Figure 21. 

 

 
 

Figure 20. Disruption of the computational algorithm in TNM for h0 = lave 

 
In the system presented in Figure 21: 
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therefore, the critical indicator of triangle area : 
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If the indicator of triangle area is equal or greater than cr

AI  in any step, the three spheres that are 

closest to the center of the existing triangle are identified, and sphere numbers in the current 
triangle are modified. The algorithm is repeated (to calculate the coordinates of vortices, the 
center, etc.) and then continued. The total number of corrections is presented in the final report.  
 

 
 

Figure 21. Illustration for the critical triangle problem. 

 
The correction significantly improved path quality in TNM (Fig. 22), despite the fact that only 5 

triangles were corrected. A local increase in triangle area was still observed (where 3<AI  in 

every case), which could probably be attributed to less densely packed particles in this region. The 
above findings are generally consistent with the PVF3D simulation where minor local changes in 
porosity were observed throughout the entire bed (refer to section 13). 
 

 
 

Figure 22. Distribution of indicator AI  in TNM for h0 = lave after correction 

 
The results of the calculations for the four described methods are presented in Table 1. Paths are 
visualized in Figure 10. The results of the calculations for TNM and h0 = lave account for the 

corrections based on cr

AI . 
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Table 1. Calculation results 

Method 
0h  hC  γC  pn  0L  pL  τ  

AE  BE  KC  

TCM 
avel  0.1  - 74 0.25805 0.28406 1.21177 15049234.3 3980 1439430 

TCM 
aved  0.1  - 83 0.25805 0.28715 1.23826 15049234.3 3980 1470903 

TNM 
avel  0.1  0.1  119 0.25805 0.31867 1.52501 15049234.3 3980 1811536 

TNM 
aved  0.1  0.1  128 0.25805 0.31531 1.49299 15049234.3 3980 1773498 

 
7. Indicator of path quality 
 

Indicator of path quality FI  was introduced to determine the effectiveness of the method of 

calculating the search point. This indicator evaluates the proximity of the current search point to 

the center of an actual sphere. Indicator FI is expressed as follows: 
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If FI is less than 1, the search point is positioned inside an actual sphere (the distance to the 

center of the sphere is smaller than the sphere's radius). The above implies that the search point 

was described ideally and that the required sphere was successfully identified. If FI is greater than 

1, the search point is situated in the space between spheres. The values of FI calculated with the 

four discussed methods are presented in Figures 23 and 24. In TNM, the search for spheres is far 
more effective than in TCM which does not confirm the assumption that the smallest fragments 
of the bed have a tetrahedral structure in 3D (which is the main reason why TCM should be 
excluded from further analyses). The relationship between search effectiveness and bed density is 
also presented in Figure 24 (refer to Fig. 44).  
 

 
 

Figure 23. Distribution of FI  in TCM 

 

The average value of the path quality indicator FI  was generally used in subsequent analyses. 

This parameter was applied to evaluate the quality of the sphere search method. 
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Figure 24. Distribution of FI  in TNM 

 
8. Algorithm sensitivity to changes in specific height 
 

Algorithm sensitivity to changes in the value of hC  was verified in the next stage of the analysis. 

The results of the calculations are presented in Figures 25-27. TCM was far more sensitive to 

changes in hC  than TNM, which validates the previous conclusion that the next sphere should 

be positioned directive "above" the triangle in the direction of its normal. Ultimately, TNM was 
regarded as a superior model that is better adapted to actual data. It should be noted that all 
presented values were characterized by similar degree and type of sensitivity. The aim of the 
simulation was to find the smallest possible value of tortuosity; therefore, the optimal value of the 

coefficient of specific height was determined at 5.0≈hC . All of the presented curves achieved 

minimum values at this value of hC . At this stage of research, it is difficult to determine whether 

this is a general characteristic of all beds containing spherical particles, or whether it is a specific 

feature of the analyzed test bed. The value of hC  up to which the results are minimized should 

be determined and regarded as correct. This constant can be eliminated in a sensitivity analysis, 
which generally increases the value of every mathematical model. 
 

 
 

Figure 25. The relationship between coefficient hC  and the number of path points 
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Figure 26. The relationship between coefficient hC  and tortuosity  

 

 
 

Figure 27. The relationship between coefficient hC  and the value of the Kozeny-Carman equation 

 

The optimal value of coefficient hC  can be explained based on Figure 28. For 1=hC , the search 

point is positioned relatively high, and a sphere positioned above the search point could be 
identified as the nearest sphere (test results indicate that this is often the case). The sphere that 
constitutes the actual tetrahedral vortex is omitted. This is because the search area (red circle) and 
the triangle area (black line) are separated by unverified space (diagonal lines). When the height of 
the search point is decreased, this space is eliminated, which increases the probability that the 
tetrahedral vortex has been correctly identified . 
 

 
 

Figure 28. Schematic diagram of the optimal value of coefficient hC  
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9. Algorithm sensitivity to changes in the angle of the triangle normal 
 
The model's sensitivity to changes in the angle of the triangle normal was tested in the next stage 
of the study. The aim of the analysis was to determine whether minor changes in the angle of the 
normal towards the top layer of the bed would shorten the path and decrease tortuosity (in this 
case, model TNM would approximate model TCM). The results of the calculations for TNM and 

1=hC  are presented in Figures 29-31. 

 
The presented approach was not justified by the laws of physics, and it was ultimately rejected. 

Successive calculations were performed on the assumption that 1=γC . 

 

 
 

Figure 29. The relationship between coefficient γC  and the number of path points 

 

 
 

Figure 30. The relationship between coefficient γC  and tortuosity 
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Figure 31. The relationship between coefficient γC  and the value of the Kozeny-Carman equation 

 

10. Specific height as a function of indicator AI  

 
If all spheres come have mutual points of contact and form a tetrahedron, the vortex will be 
separated by a maximum distance from the base. However, the vortex sphere will "fall" in 
between the spheres forming the base as the distance between those spheres increases. Therefore, 
if: 
 

 cr

AA II → ,          (24) 

 
then  
 
 0→h .          (25) 
 

The above suggests that coefficient hC  with a constant value should not be used; instead, 

function f

hC dependent on AI  should be applied: 
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The above criteria are met by the following function: 
 

 ( ) ( )( )
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1 .       (28) 

 

Function ( )A

f

h IC  is presented in Figure 32.  
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Figure 32. Correcting function 
f

hC  

 

Function ( )A

f

h IC  has two coefficients. Coefficient a  is responsible for the angle of the curve. 

The exact value of coefficient a  can be determined based on the criterion of minimum path 
length or minimum tortuosity: 
 

Coefficient b  should correspond to the average value of AI  calculated for the entire bed. As a 

result, in a "standard" triangle: 
 

h

f

h CC ⋅= 5.0 .          (29) 

 

The calculated value of 3.1≈AI .  

 
The results of the calculations performed for different values of coefficient a  are presented in 

Figure 33. Function f

hC significantly decreased tortuosity to the expected level of 93 << a . The 

number of spheres identified for the above range of values was identical (Fig. 34). It should also 
be noted that an increase in the value of a  within the above range also increases the average 

value of FI  which is less than 8.0  for 9=a  and is a highly satisfactory result. 

 

 
 

Figure 33. Tortuosity as a function of coefficient a  
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Figure 34. Number of spheres surrounding the path as a function of coefficient a  

 

 
 

Figure 35. The average value of FI  as a function of coefficient a  

 

 
 

Figure 36. Value of the Kozeny-Carman equation as a function of coefficient a  

 

If 0=a , curve ( )A

f

h IC  becomes a straight horizontal line and the value of the function is always 

5.0 . This implies that the results for 5.0=hC  and ( )3.1,0 == baC
f

h  should be identical. The 

above was fully validated by the performed tests.  
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11. Selection of the starting point and determination of average tortuosity 
 
In previous analyses, the starting point was always positioned centrally inside the bed. This 
section will aim to determine the magnitude of differences in the results if various starting points 
are adopted. In addition to the central point, four points were positioned at mid-distance between 
the center and the container wall on negative and positive X-axes and tortuosity (refer to Fig. 37 
and 38). The results are presented in Tables 4 and 5. 
 

Table 4.  The results of the calculations for 5 starting points in TNM, avelh =0 , 5.0=hC  

Position pn  
FI  τ  KC  

+x 125 1.02503 1.44958 1721930.07710 
-x 130 1.02578 1.51340 1797734.02860 
+y 129 1.01683 1.51845 1803737.05410 
-y 129 1.00480 1.48376 1762528.26340 
0 128 0.99598 1.45603 1729589.67280 

Average 128.20 1.01368 1.48424 1763103.81920 
 

Table 5.  The results of the calculations for 5 starting points in TNM, avelh =0 , ( )3.1,0.9 == baC
f

h  

Position pn  
FI  τ  KC  

+x 126 0.81438 1.38040 1639752.25080 
-x 130 0.83741 1.50890 1792388.36080 
+y 133 0.86315 1.54804 1838881.49840 
-y 127 0.91392 1.40253 1666040.01190 
0 132 0.92779 1.62483 1930101.19820 

Average 129.60 0.87133 1.49294 1773432.66402 

 
The selection of different starting points led to variations in path length. The above indicates that 
calculations should be performed at numerous points inside the bed and that the results should 
be averaged. The number of such calculations remains debatable. Five points were adopted in 
successive calculations. 
 

 
 

Figure 37. Tortuosity values in TNM, avelh =0  
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Figure 38. Values of indicator FI  in TNM, avelh =0 , ( )3.1,0.9 == baC
f

h  

 

 
 

Figure 39. Values of the Kozeny-Carman equation in TNM, avelh =0 , ( )3.1,0.9 == baC
f

h  

 
The paths generated by both methods are visualized in Figures 40 and 41. 
 

 
 

Figure 40. Visualization of paths in TNM, avelh =0 , 5.0=hC  
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Figure 41. Visualization of paths in TNM, avelh =0 , ( )3.1,0.9 == baC
f

h  

 
12. Determination of bed porosity 
 
The developed program generates information about the number and size of all spheres in the 
bed and supports the determination of bed porosity. The standard formula for calculating 
porosity was used: 
 

 
bin

s

V

V
e −= 1 ,          (30) 

 

where sV  is the combined volume of all particles [m3]: 
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and binV  is container volume [m3] 
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2
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Symbol binD  denotes the diameter of the container with the test bed [m]. 

 
Porosity was determined at 0.4265=e , and it is somewhat higher than the experimentally 

determined value of 408.0exp =e . This minor difference can probably be attributed to the 

method of calculating container volume, specifically its height. Container height was determined 
as the difference between the Z-coordinate of the topmost and the bottommost sphere in the 
bed. The sphere radius multiplied by two was added to the resulting value. The presented formula 
contains a logical error because unlike the bottom layer of the bed, the top layer is not ideally flat. 
As a result, a small empty space between the last sphere layer and the plane at height 

2
)1()( ave

s

d
znz +−  was included in the calculations of porosity. In Figure 42, this empty area is 
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visible under the grey line representing the indicated plane. The formula for calculating container 
volume (bed volume) should be adjusted to account for the above issue. 
 

 
 

Figure 42. Visualization of the top surface of the container. 
 

 
 

Figure 43. The coordinates of 100 topmost spheres. 

 

 
 

Figure 44. Changes in porosity as a function of the number of eliminated spheres 

 
The formula was adjusted by verifying the Z-coordinates of 100 topmost spheres. The result is 
shown in Figure 43. A certain number of topmost spheres were positioned on other spheres in a 
manner that significantly increased their coordinates. The results presented in Figure 43 indicate 
that a certain number of topmost spheres should be rejected.  
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Formulas (31) and (32) were modified as follows: 
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and 
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where corn  is the number of rejected spheres. 

 
The changes in porosity induced by the number of eliminated spheres are presented in Figure 44. 
The combined volume of all spheres and bed height (container volume) were corrected in every 
case. Changes in porosity were smaller than expected, and the result was not significantly 
modified by the introduced correction. The above indicates that the differences between the 
porosity calculated in the program and that simulated by PFC3D have different causes. It is 
possible that the changes resulting from the elimination of a certain number of topmost spheres 
are far smaller than the changes in bed porosity at that height. The results presented in the next 
section indicate that changes in bed porosity are considerable.  
 
13. Influence of porosity on path quality 
 
On several occasions, the operation of the program deteriorated beginning from a certain height, 
approximately 2/3 of bed height. The size of the triangles was disrupted above that level, and the 
correction described in point 6 (refer to Fig. 20) had to be applied. The observed disruption was 
probably caused by changes in bed porosity. Figure 44 presents the distribution of porosity, 
calculated in PVC3D, for five points in the bed – in the center and at four points on the semi-
axes of the coordinate system at mid-distance between the center and the wall of the container. 
These points were marked "+x", "-x", "+y" and "-y", respectively. Figure 45 indicates that the 
algorithm deteriorated above the bed height where minimum porosity was observed.  
 

 
 

Figure 45. Distribution of porosity in PFC3D 
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14. Sensitivity analysis of the Ergun model  
 
The developed program calculates the terms of equations supporting the determination of the 
drop in pressure during fluid flow through a porous bed. The program presently supports two 
models: the Ergun model and the Kozeny-Carman model. The Ergun model (1952) has the 
following form: 
 

 2

323

2 )1(
75.1

)1(
150 v

de

e
v

de

e

dL
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aveave

⋅⋅
⋅
−⋅+⋅⋅

⋅
−⋅=− ρµ ,     (35) 

 
where: v  – filtration rate [m/s], ρ  – fluid density [kg/m3], µ  – dynamic viscosity [kg/(m.s)]. 

The Ergun equation can also be written as: 
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This form of the Ergun equation corresponds to the Forchheimer law. 
 

 
 

Figure 46. The influence of porosity and average sphere diameter on the value of term A in the Ergun model 

 
The Ergun equation is generally a function of two geometric parameters, and the model's 
sensitivity to changes in these parameters was analyzed. A designated program was developed for 
this purpose to illustrate the spatial distribution of terms A  and B  in the Ergun model. The 
results are presented in Figures 46 and 47. The positions corresponding to the values from the 
test bed are marked with red dots. Both points are positioned in a flat area, which indicates that 
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inaccurate values of these parameters should not significantly influence the drop in pressure 
computed in that model. The distribution of pressure drop values for this formula is presented in 
Figure 48. 

 

 
 

Figure 47. The influence of porosity and average sphere diameter on the value of term B  in the Ergun model 
 

 
 

Figure 48. The influence of porosity and average sphere diameter on the pressure drop described by the Ergun 
equation  

 
15. Sensitivity analysis of the Kozeny-Carman model 
 
The Kozeny-Carman equation was the second model to be implemented in the program. This 
model was developed for well sorted sand (a medium with a finer structure than the presented 
test bed), and it has the following form: 
 

v
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2
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where: c  - constant, τ - tortuosity, 0S - surface area characteristic of a porous body. The 

Kozeny-Carman equation can be written as follows: 
 

vA
dL

dp
KC ⋅⋅=− µ ,         (40) 



Research Report No 1/2009 

 32 

where 
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Tortuosity was defined at the beginning of the study. Specific surface area is determined with the 
use of the below formula: 
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S
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where: sS  - external surface area of a porous body [m2], binV  - bed porosity [m3]. Container 

volume was calculated based on formula (33), and sphere area was calculated according to 
formula (43): 
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Figure 49. The influence of porosity and surface area characteristic of a porous body on the pressure drop described 

by the Kozeny-Carman equation. 

 

 
 

Figure 50. The influence of porosity and tortuosity on the pressure drop described by the Kozeny-Carman equation 
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The results of the analysis are presented in Figures 49 and 50 which indicate that the Kozeny-
Carman model is much more sensitive to changes in geometric parameters. This outcome was 
expected because the formula has a more complex form, which is strongly influenced by the 
geometry of the tested medium.  
 
16. Determination of optimal model parameters 
 
Based on the results of the conducted tests, the optimal configuration of parameters was 
presented in Table 6. For those parameters, tortuosity was determined at 1.49294=τ  (identical 
to that presented in Table 5; the decrease in coefficient value from 9.0  to 7.0  did not affect the 
result). 
 
Table 6. Optimal configuration of the modeled parameters 
Method of calculating search point coordinates 
 

TNM 

Method of calculating height 0h  avel  

Method of correcting height 0h  ( )3.1,0.7 == baC
f

h  

Correction factor γC  0.1  

Number of spheres eliminated from the top layer of the bed corn  5  

Triangle correction for 
cr

AA II =  YES 

Five-point averaging YES 

 

 
 

Figure 51. Tortuosity values calculated for the parameters in Table 6. 
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Figure 52. Visualization of paths for the parameters in Table 6 
 

Path length and, consequently, tortuosity (Fig. 51), calculated for the values in Table 6 seem to be 
excessive. The quality of the calculations could be improved with path smoothing algorithms, and 
this problem will be discussed in the next section. The optimal method should include a 
parameter for controlling the degree of smoothing.  
 
17. Path smoothing 
 
Selected segments of the path form a polygonal chain with acute angles (Fig. 53). Path smoothing 
algorithms could be applied to model the path more realistically. This problem can be analyzed 
separately from the presented solutions. The only required information for path smoothing is the 
position of each point in space and the number of points. Therefore, path smoothing is not 
directly related to the methods described in this article.   
 

 

Figure 53. Visualization of a path segment in 

TNM, avelh =0 , ( )3.1,5.0 == baC
f

h  
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The following options can be considered in the path smoothing process: 
 

• elimination of "mutants" (Fig. 54a) – selected path points are unnaturally distant from 
the course of the path. An example is shown in Figure 53 (more or less in the center). 
This point could be disregarded in the calculations. The selection of a search algorithm 
and the criteria for selecting such objects are open to debate. 

• rounding off path breakdown points (Fig. 54b) – some segments of the path are 
relatively smooth, but frequent and rapid changes in direction are observed in other 
areas (marked at the top of the path in Fig. 53). The path could be approximated with a 
curve, and its length could be calculated after this transformation. The path should be 
somewhat shorter, which is generally desirable. This is probably the most interesting 
avenue of future research. 

• incorporation of tetrahedral centers (Fig. 54c) – tetrahedral centers could be 
incorporated into the path (after path smoothing by approximation). The resulting path 
could approximate reality more effectively. 

 

 
 

Figure 54. Visualization of path smoothing methods 
 
The use of Bezier curves could also be considered. A previously designed program for plotting 
Bezier curves in space is presented in Figure 55. 
 

 
 

Figure 55. Path smoothing with Bezier curves (previously designed program) 
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18. Path smoothing methods 
 
The following conclusions can be drawn from an analysis of path smoothing methods:  
 

• The elimination of selected path points is not logically justified. A control parameter is 
required to determine which path points should be rejected. This method was ultimately 
abandoned.  

• The method that relies on Bezier curves for 3D approximation also seems to have 
numerous defects: 

─ it is difficult to implement, 
─ two auxiliary points are required to control the shape of the curve, which generates 

additional problems relating to point selection, 
─ successive algorithms are required for integrating the path and calculating its length. 

 
The above problems indicate that path length should be adjusted locally, depending on the angle 
between the adjoining path segments. The angle was calculated based on the law of cosines: 
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where i  is the number of the current path point, and variables ia , ib  and ic  denote the side 

lengths of a triangle formed by three adjacent path points, as demonstrated in Figure 56a.  
 

 
 

Figure 56. Schematic diagram of the path smoothing method  
 
The value of angle ϖ  (in degrees) for the case described in section 16 is presented in Figure 57. 
In the discussed case, the average value of angle ϖ was 13.140  degrees. 
 

The path was divided into segments with length 
22

ii ba + . The length of successive segments 

would decrease, subject to the value of angle iϖ . An additional correcting function was 

introduced for this purpose: 
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Figure 57. Values of the angle between successive segments of the path for the case analyzed in section 16. 

 
The function is presented in Figure 58. The correction factor equals 0  for 180=ϖ . The 
correction factor also approximates zero for smaller angles, and it increases very slowly. The rate 

of increase in the value of cor

iϖ  is determined by coefficient aϖ .  

 

 
 

Figure 58. The relationship between angle ϖ  and the correction factor. 

 
After the correction, the formula for calculating path length will have the following form: 
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p babaL ϖ       (46) 

 
The first term of the equation accounts for the first half of the first path segment and the second 
half of the last path segment. The sum of halves of the segments adjacent to the current path 
point (red segments in Fig. 56b), multiplied by the correction factor, is shown under the 
summation sign. This value is generally less than 1; therefore, the resulting value is somewhat 

smaller than the sum of 
22

ii ba +  (and is always determined by the angle between segments). A 

decrease in the length of this path segment is equivalent to path rounding in its current point, as 
demonstrated in Figure 56c.  
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Figure 59. The value of the correction factor for the case analyzed in section 16 

 
The value of the correction factor for the case analyzed in section 16 is presented in Figure 58. 

Coefficient 087.0=aϖ  (selected experimentally), whereas 909 =ϖ  (constant value in the model, 

equivalent to 90°). The value of tortuosity for the above parameters is 3.1=corτ .  
 
A comparison of the data in Figures 57 and 59 clearly indicates that path points with the smallest 
angle are most extensively corrected.  
 

 
 

Figure 60. The relationship between correction factor aϖ  and the value of 
corτ for the case analyzed in section 16 

 

The relationship between correction factor aϖ  and the value of corτ  for the case analyzed in 

section 16 is presented in Figure 60. The correction factor for the discussed test bed should range 
from 08.0  to 09.0 . 

 
19. Determination of path length by 2D image analysis 
 
The applicability of 2D image analysis methods for determining path length was analyzed in this 
part of the article. The authors relied on study [6], where the distribution of particles was 
visualized with the use of X-rays (Fig. 1c in the cited study). As expected, the calculation of path 
length in a 2D image did not approximate reality, and the result was considerably underestimated. 
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Three paths with a length of 83.138 , 55.136  and 51.136  (units are not relevant) and tortuosity 
of 173.1 , 135.1  and 134.1 , respectively, are presented in Figure 61. These values are too low, 
which can be attributed to the fact that 2D images do not account for changes in path depth; 
therefore, the path is shortened.  
 
In the presented calculations, the percentage increase in length in plane XZ for the three 
performed measurements was determined at %3.8 , %52.6  and %49.6 . If we assume that a 
similar increase will take place in plane YZ, path length should be doubled to account for the 
percentage value. When this assumption is taken into account, path lengths will increase to 

47.149 , 92.144  and 83.144 . The respective tortuosity values for path length pL  will reach 

360.1 , 278.1  and 276.1 . Average tortuosity will be 3.1 , and it corresponds to 3.1=corτ  
calculated in the previous section. 
 

 
 

Figure 61. Calculation of path length with the use of an image analysis method described in [6] 

 
20. Tortuosity values in the literature 
 
The importance of tortuosity has been emphasized in the literature, but very few studies make a 
reference to the actual values of this parameter. The above can be attributed to the fact that 
tortuosity is very difficult to calculate and measure. 
 

21. Conclusions 
 
The results of this study support the formulation of the following conclusions: 
 

• The value of tortuosity can be calculated if the relevant data, including the number of 
spheres in the bed, sphere diameter and position, are available. 

• The TNM model described in this study appears to be logically and mathematically 
cohesive, and the generated results can be useful in practice. It appears that the remaining 
methods should be rejected. 

• Path length and, consequently, tortuosity appear somewhat excessive. 
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• The path can be smoothed, but the proposed method requires a constant smoothing 
parameter, which is a certain disadvantage. The constant seems to be independent of the 
selected smoothing method because the tortuosity of fluid flowing in the same path 
cannot be unambiguously determined.  

• The actual value of tortuosity in the test bed or in a medium with a very similar structure 
should be determined experimentally to generate more accurate results. 
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